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Abstract The thesis begins with a short introduction to elliptic, parabolic
and hyperbolic Partial Differential Equations and proceedes with a presentation
of the Finite Element Method. Some important models for the representation
of curves, surfaces and solids are explored before introducing a generalization
of the Finite Element Method, namely Isogeometric Analysis. Algorithms for
computation and numerical examples are presented.
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Chapter 1

Introduction

An efficient way of describing the behaviour of a system (e.g. natural systems)
is to use a mathematical model. Among the mathematical models, differential
equations (briefly described in Section 1.3) are commonly used when trying to
relate functions to their rates of change. Examples of processes described by dif-
ferential equations are constructions, weather, flow of liquids (e.g. flow of blood
in human veins), deformation of solid bodies, heat transfer, chemical reactions,
electromagnetism etc... Differential equations can be grouped in Ordinary Dif-
ferential Equations (ODEs) and Partial Differential Equations (PDEs). ODEs
are equations in which the unknown function is a function of a single variable;
vice versa in PDEs the unknown function is a function of multiple variables.
The manipulation of models is an important task for people to control, predict
and understand the processes they describe.

Unfortunately, we are not able to find exact solutions for many of these types
of equations, and sometimes we don’t even know whether the solution exists or
not or whether it is unique or not. However, approximation methods exist, and
one of these is the Finite Element Method (FEM). FEM is currently one of the
most efficient way of finding approximations for PDEs for which we’re not able to
find an exact solution. The idea of FEM is to divide the domain of the problem
in finite elements where a finite set of polynomial basis functions is defined, and
which create the basis for the space where the approximated solution is searched.
This way, the problem is transformed into a discrete problem, as the solution is
expressed through a finite number of unknown parameters. A key concept in this
process is the choice of the finite set of polynomials used in the approximation:
until recent times, mostly simple shape functions were used, so as to simplify
implementation and usage. During the last years, the usage of higher-order
shape functions has been reconsidered, due to their superior approximation
capabilities. However, employing such more complex shape functions requires a
better understanding of the underlying mathematics. Chapter 2 reports a brief
discussion of finite elements and of the main concepts of FEM.

A new development of FEM has been recently proposed in [3, 18] (but already
proposed before in [15]) and named Isogeometric Analysis (IGA). This can be
considered an improvement which generalizes the concepts of FEM through
a different definition of the basis functions using CAD basis functions, whose
description is reported in Chapter 3.

This new idea is described in Chapter 4. Examples of usage of IGA are given

15



16 CHAPTER 1. INTRODUCTION

Figure 1.1: Current automated design loop.

in Chapter 5.

1.1 Automated Design Loop
Automated design loops are now used in industrial environments to create and
optimize models. These loops are made up of many phases, each employing
different input/output technologies and each belonging to different scientific
fields. It is difficult, therefore, to let data be processed by all these phases: this
results in a considerable overhead due to frequent translations and adaptations
of the same model. A representation of the loop can be seen in Figure 1.1.

A CAD modeler is first used in order to design a first draft of the sys-
tem under construction. This model can be described using any kind of CAD
functions, such as B-splines, NURBS’s or T-splines (see 3), for instance. This
model is then the input of the grid generator , which creates a grid on the CAD
model. This causes a deep modification of the geometry (see Figures 2.4, 2.3
and 5.9). Typically, in fact, piecewise-linear functions are used to approximate
the boundaries, for example using a triangulation technique. The grid generated
is then passed to the optimization loop, which simulates some kind of situation,
and, according to the results, deforms the grid so as to maximize an objective
function. The deformed grid is then passed back to the CAD modeler for the
manufacturing process. This loop has several drawbacks:

• it spans many different technological fields, causing integration issues;

• it includes many different representations of similar concepts, requiring
translations and conversions;

• it needs several different software with several different input/output for-
mats.

The loop just presented is the loop resulting when FEM-based solvers are used.
A completely different approach is that of IGA (see Figure 1.2). The concept

is to perform computations on parametric curves, surfaces and volumes instead
of grids: thus, the grid generator is replaced by the volumetric modeler, which
builds a CAD domain needed by the optimization loop. Simulations are, in the
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Figure 1.2: Isogeometric automated design loop.

loop, carried out performing integrations on the CAD basis functions. Far less
overhead should be introduced in this approach, which can now be merged in
one single process. This approach is a step towards integration of CAD and
FEM.

1.2 Approximation

As already remarked, the problem of finding a function satisfying a PDE or a
system of PDE and some additional constrains, is not exactly solvable in general.
It is therefore necessary to approximate the resulting function starting from a
certain number of known values, the degrees of freedom (DOFs). FEM and IGA
are responsible of finding these values.

Assume C is a set of functions where C ⊂ V and V is a linear space. If g ∈ V ,
an approximation problem consists in finding a function gC ∈ C which is close
to g, where the term close is to be defined some way. The measure of the quality
of the approximation can be defined, for instance, as the norm ‖g − gC‖V if the
linear space V is a normed space. In this case, the best approximation is that
function gC which minimizes the distance between gC and g. The approximation
problem becomes an interpolation when gC has to satisfy some constraints,
generally defined by

Li (gC) = bi, i = 1, . . . , NC ,

with Li : V → R independent linear forms in V ′ and bi given constraints. This
is the case for the Lagrange interpolation in 2.3.4.1, for instance.

It is clear that the choice of the space C is critical to get an approximation
close to the exact solution. The features of the approximation using one of the
sets or the other will be explored in detail in 2.2 and in 4.4.

1.2.1 Best interpolant

Assume V ′ is a finite-dimensional subset of the Hilbert space V . According
to Lemma A.25, the closest element to g ∈ V is the orthogonal projection
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g′ = Pg ∈ V ′ in the norm ‖·‖V . The orthogonal projection is defined as

〈g − g′, v′〉V = 0, ∀v′ ∈ V ′,

or, assuming {v′1, . . . , v′N} ⊂ V ′ is a basis of V ′

〈g − g′, v′i〉V = 0, ∀v′i, i = 1, . . . , N. (1.1)

Being V ′ a linear space and as g′ ∈ V ′ we can write it as the linear combination

g′ =

N∑
j=1

ḡ′jv
′
j ,

which can be substituted in (1.1), yielding

N∑
j=1

ḡ′j
〈
v′j , v

′
i

〉
V

= 〈g, v′i〉V , ∀i = 1, . . . , N.

This is a linear system in the unknowns ḡ′1, . . . , ḡ′N .

1.3 Partial Differential Equations (PDEs)
PDEs encountered in physics and engineering are mostly second-order PDEs
which are usually either elliptic, parabolic or hyperbolic. Elliptic equations de-
scribe the particular state of a system characterized by the minimum of a spe-
cific quantity (usually energy), parabolic problems mostly describe its evolution
whereas hyperbolic equations model the transport of some physical quantity or
information. Any other kind of second-order PDE is said to be undetermined.

The general form of a second-order PDE defined on an open connected1 set
(see Sub-subsection A.2.1) Z ⊂ Rn in n independent variables z = (z1, . . . , zn)

T

can be expressed as

−
n∑

i,j=1

∂

∂zi

(
aij

∂u

∂zj

)
+

n∑
i=1

(
∂

∂zi
(biu) + ci

∂u

∂zi

)
+ a0u = f (1.2)

where aij , bi, ci, a0 and f are all functions of the variable z. For all derivatives to
exist it is necessary to be: u ∈ C2 (Z), aij ∈ C1 (Z), bi ∈ C1 (Z), ci ∈ C1 (Z),
a0 ∈ C (Z) and f ∈ C (Z) (for the definition of continuity see Section B.1).
According to this way of expressing a PDE, it is possible to define the terms
elliptic, parabolic and hyperbolic used above.

Definition 1.1. According to the equation (1.2) and to the matrix A (z) =
{aij}ni,j=1, the equation is said to be elliptic at z ∈ Z if A (z) is positive definite,
parabolic if both at z ∈ Z A (z) is positive semidefinite (and not definite) and
the rank of (A (z) , b (z) , c (z)) is n and hyperbolic when at z ∈ Z A (z) has
one negative and n − 1 positive eigenvalues. An equation is elliptic, parabolic
or hyperbolic when it is elliptic, parabolic or hyperbolic for all z ∈ Z.

1A connected space is a topological space which cannot be represented as the union of two
or more disjoint nonempty open subsets. A subset of a topological space X is a connected set
if it is a connected space when viewed as a subspace of X.
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Remark 1.2. In practice we distinguish between time-independent PDEs (like
elliptic PDEs) and time-dependent PDEs. For a time-independent equation, we
define n = d (d is the spatial dimension) and z = x (x is the spatial variable).
In case the equation is time-dependant, it is useful to define n = d+1 (d spatial
dimensions plus time) and z = (x, t), where t represents the time. The same
way, we define Z to be a domain which comprise both space and time, and we
use Ω when the domain is time-independent. When there is the special case in
which the equation is time-dependant but the spatial domain is not, we use the
expression space-time cylinder, and we denote it with Z = Ω× (0, T ) (Ω is the
spatial portion of the domain, (0, T ) is the time interval).

Definition 1.3. It is useful to define the elliptic operator L which allows the
writing of PDEs in a compact form (elliptic equations are time-independent so
n = d and u = u (x) = u (z)):

Lu = −
n∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
+

n∑
i=1

(
∂

∂xi
(biu) + ci

∂u

∂xi

)
+ a0u. (1.3)

1.4 Second-order elliptic equations
Second-order elliptic equations are briefly presented: weak formulation is de-
rived, nonhomogeneous Dirichlet boundary conditions and Neumann boundary
conditions are introduced.

1.4.1 Weak formulation
Assuming an elliptic equation in the form of the equation (1.2), it is possible to
consider the alternate model equation

−∇ · (a1∇u) + a0u = f (1.4)

where aij (x) = a1 (x) δij and b (x) = c (x) = 0 in Ω, and Ω is Ω ⊂ Rd with
Lipschitz-continuous2 boundary.

The simplest case is obtained imposing the homogeneous Dirichlet boundary
conditions

u (x) = 0, ∀x ∈ ∂Ω (1.5)

which assure the solution function will vanish on the boundary of the domain.
In these conditions, the strong or classical solution to the problem consisting

of the equations (1.4) and (1.5) is a function u ∈ C2 (Ω)∩C
(
Ω
)
for which (1.4)

is true for all x ∈ Ω and (1.5) is true for all x ∈ ∂Ω. Unfortunately, it is not
possible to guarantee the solvability of the problem in any way.

Nevertheless, it is possible to introduce an alternative model of the problem
(1.4), (1.5). This model, named weak formulation, can be derived following four
steps which begin with the use of (1.4).

2Given two metric spaces (X, dX) and (Y, dY ), where dX denotes the metric on the set X
and dY denoted the metric on the set Y , a function f : X → Y is called Lipschitz-continuous
if there exists a real constant K ≥ 0 such that, for all x1 and x2 in X

dY (f (x1) , f (x2)) ≤ KdX (x1, x2) .
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1. Multiply with a test function (also named weight function of variation)
ϕ ∈ C∞0 (Ω) (for a definition of C∞0 (Ω) see Sub-subsection A.4.1):

−∇ · (a1∇u)ϕ+ a0uϕ = fϕ.

2. Integrate over the domain Ω:

−
¨

Ω

∇ · (a1∇u)ϕdx+

¨
Ω

a0uϕx =

¨
Ω

fϕx.

3. Using the Green’s theorem (see Subsection A.4.2) it is possible to reduce
the maximum order of the derivatives:¨

Ω

a1∇u · ∇ϕdx+

¨
Ω

a0uϕdx =

¨
Ω

fϕdx+

˛
∂Ω

ϕa1
∂u

∂n
dS.

Furthermore, it is to consider that ϕ is a distribution and, for what is
explained in Sub-subsection A.4.1, is null on the boundary of the domain
Ω, leading to

¨
Ω

a1∇u · ∇ϕdx+

¨
Ω

a0uϕdx =

¨
Ω

fϕdx. (1.6)

4. It is possible to change the spaces assumed above, relaxing the restrictions.
It was necessary to assume u ∈ C2 (Ω) ∩ C

(
Ω
)
and ϕ ∈ C∞0 (Ω) but,

considering the equation (1.6) it is sufficient to assume u ∈ U and ϕ ∈ V
with U = V = H1

0 (Ω), f ∈ L2 (Ω) and a1, a0 ∈ L∞ (Ω).

It is therefore possible now to formulate the problem in a different way: given
f ∈ L2 (Ω), find a u ∈ U so that

¨
Ω

(a1∇u · ∇ϕ+ a0uϕ) dx =

¨
Ω

fϕdx, ∀ϕ ∈ V.

The writing of the formulae above can be simplified employing the bilinear form
a (·, ·) : U × V → R and a linear form l (·) : V → R defined respectively:

a (u, ϕ) =

¨
Ω

(a1∇u · ∇ϕ+ a0uϕ) dx

and
l (ϕ) =

¨
Ω

fϕdx.

(1.6) can then be rewritten in the simpler way

a (u, ϕ) = l (ϕ) .

1.4.2 Nonhomogeneous Dirichlet boundary conditions
The model reported so far assumes the homogeneous Dirichlet boundary con-
ditions of the equation (1.5). It is necessary to extend the model in order to
accommodate for the presence of the nonhomogeneous Dirichlet boundary con-
ditions

u (x) = g (x) , ∀x ∈ ∂Ω. (1.7)
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where g ∈ C (∂Ω). This requires to redefine the set of trial solutions U with

U =
{
u|u ∈ H1 (Ω) , u (x) = g (x)∀x ∈ ∂Ω

}
.

For reasons that will be explained afterwards, a new function γ ∈ C2 (Ω)∩C
(
Ω̄
)

(called Dirichlet lift) for which γ = g on the boundary of Ω so that

u = γ + υ, (1.8)

is defined, with υ ∈ V . By substitution, the problem (1.4), (1.7) yields:{
−∇ · (a1∇υ) + a0υ = f +∇ · (a1∇γ)− a0γ, ∀x ∈ Ω
υ = 0, ∀x ∈ ∂Ω

.

Following the four steps of the sub-subsection 1.4.1, the weak formulation reads:
given f ∈ L2 (Ω), find υ ∈ V for which

¨
Ω

(a1∇υ · ∇ϕ+ a0υϕ) dx =

¨
Ω

(fϕ− a1∇γ · ∇ϕ− a0γϕ) dx, ∀ϕ ∈ V

or in the language of the linear forms

a (υ, ϕ) = l (ϕ) , ∀ϕ ∈ V,

with
a (υ, ϕ) =

¨
Ω

(a1∇υ · ∇ϕ+ a0υϕ) dx, ϕ ∈ V

l (ϕ) =

¨
Ω

(fϕ− a1∇γ · ∇ϕ− a0γϕ) dx, ϕ ∈ V

given (1.7) and (1.8).
It is possible to prove that the solution is independent on the Dirichlet lift

γ.

1.4.3 Neumann boundary conditions
There are different kinds of boundary conditions which can be imposed to the
problem of the equation (1.4). Neumann boundary conditions can be expressed
with

∂u (x)

∂ν
= g (x) , ∀x ∈ ∂Ω. (1.9)

with g ∈ C (∂Ω).
Following the usual four steps for the formulation of the weak form of the

problem, it can be seen that the function ϕ does not vanish anymore on the
boundary. This is because we now have to require both u and v to be C∞ (Ω)∩
C1 (Ω), as they have to be differentiable on the boundary of Ω, so that v doesn’t
vanish anymore and a new integral appears in the final formulation, which
becomes: given f ∈ L2 (Ω) and g ∈ L2 (∂Ω), find u ∈ U = H1 (Ω) (solutions are
not required to vanish on the boundary anymore, so the trial solutions space is
no more H1

0 but only H1) such that
¨

Ω

(a1∇u · ∇ϕ+ a0uϕ) dx =

¨
Ω

fϕdx+

˛
∂Ω

a1gϕdS, ∀ϕ ∈ V = H1 (Ω)
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or in the language of the linear forms

a (u, ϕ) = l (ϕ) , ∀ϕ ∈ H1 (Ω)

where
a (u, ϕ) =

¨
Ω

(a1∇u · ∇ϕ+ a0uϕ) dx, ∀ϕ, u ∈ H1 (Ω)

l (ϕ) =

¨
Ω

fϕdx+

˛
∂Ω

a1gϕdS, ∀ϕ ∈ H1 (Ω) ,

given (1.9).

1.4.4 Combination of boundary conditions
A formulation for a problem which is characterized by both Dirichlet and Neu-
mann boundary conditions can be derived from the above discussion. The
boundary ∂Ω is divided in two parts such that ∂Ω = ΓN ∪ ΓD, where ΓN
is the part of the boundary on which Neumann boundary conditions are im-
posed and where ΓD is the part on which Dirichlet conditions are defined. The
original form of the problem is then: −∇ · (a1∇u) + a0u = f, ∀x ∈ Ω

u = gD, ∀x ∈ ΓD
u = gN , ∀x ∈ ΓN

. (1.10)

Before beginning with the first step of the process of derivation of the weak
formulation, it is necessary to extend the function gD which needs to be C (ΓD)
with a function g̃D ∈ C (∂Ω) such that it is g̃D ≡ gD on ΓD. Next, as stated
above, it is necessary to define a Dirichlet lift γ so that it is possible to express
the solution u with the sum γ + υ with γ = g̃D. By substitution we get

−∇ · (a1∇ (γ + υ)) + a0 (γ + υ) = f, ∀x ∈ Ω

γ + υ = gD, ∀x ∈ ΓD
∂ (γ + υ)

∂ν
= gN , ∀x ∈ ΓN

,

which can be further modified to get
−∇ · (a1∇υ) + a0υ = f +∇ · (a1∇γ)− a0γ, ∀x ∈ Ω

υ = 0, ∀x ∈ ΓD
∂ (γ + υ)

∂ν
= gN , ∀x ∈ ΓN

. (1.11)

The four steps for the derivation of the weak formulation yield to the prob-
lem: find a function υ ∈ H1 (Ω) such that

¨
Ω

(a1∇υ · ∇ϕ+ a0υϕ) dx =

¨
Ω

(fϕ− a1∇γ · ∇ϕ− a0γϕ) dx+

ˆ
ΓN

(a1gNϕ) dS, ∀ϕ ∈ H1 (Ω) . (1.12)
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The result can now be rewritten in the language of the linear forms:

a (υ, ϕ) = l (ϕ) , ∀ϕ ∈ H1 (Ω) (1.13)

where
a (υ, ϕ) =

¨
Ω

(a1∇υ · ∇ϕ+ a0υϕ) dx, υ, ϕ ∈ H1 (Ω)

l (ϕ) =

¨
Ω

(fϕ− a1∇γ · ∇ϕ− a0γϕ) dx+

ˆ
ΓN

(a1gNϕ) dS, ∀ϕ ∈ H1 (Ω) .

1.5 Second-order parabolic equations
Another important class of PDEs is the class of second-order parabolic equa-
tions, which is a generalization of an important particular case: the heat equa-
tion. Let Ω ⊂ Rd be an open set with Lipschitz-continuous boundary. We will
refer to the equation in the form

∂u (x, t)

∂t
+ L (u (x, t)) = f (x, t) , in Ω, (1.14)

where t is the temporal variable, n = d+1 and L is an elliptic operator with time-
independent coefficients only of the form of Equation (1.3). Equation (1.14) is
considered in the time cylinder introduced in Remark 1.2 ZT = Ω× (0, T ), with
T > 0.

1.5.1 Weak formulation
The simplest case is that of homogeneous Dirichlet boundary condition, which
yields a problem of the form

∂u

∂t
+ Lu = f, in ZT

u = 0, on ∂Ω× (0, T )
u = g, on Ω× {t = 0}

.

It is necessary to assume aij , bi, ci ∈ L∞ (ZT ), f ∈ L2 (ZT ) and g ∈ L2 (ZT ).
The process of derivation of the weak formulation is similar to that used in the
elliptic case, except for the presence of the time-dependant part of the equation.
For this we need to define some spaces.

Definition 1.4. By Lq
(
0, T ;W k,p (Ω)

)
we denote the space{

u : (0, T )→W k,p (Ω) , u is measurable and
ˆ T

0

‖u (t)‖qk,p,Ω dt <∞

}
,

endowed with the norm

‖u‖Lq(0,T ;Wk,p(Ω)) =

(ˆ T

0

‖u (t)‖qk,p,Ω dt

)1

q
.

The symbol u (t) indicates a function of x such that u (t) : x→ u (x, t).
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Definition 1.5. We define the space

C ([0, T ] ;Lp (Ω)) =
{
u : [0, T ]→ Lp (Ω) : ‖u (t)‖p,Ω is continuous in [0, T ]

}
.

Analogously we define the space

C
(
[0, T ] ;W k,p (Ω)

)
=
{
u : [0, T ]→W k,p (Ω) :

‖u (t)‖k,p,Ω is continuous in [0, T ]
}
.

With these definitions it is possible to derive a weak formulation for ho-
mogeneous Dirichlet boundary conditions. The problems with the assumptions
above and u0 ∈ H1

0 (Ω) is to find u ∈ L2 (0, T ;V ) ∩ C
(
[0, T ] ;L2 (Ω)

)
for which

d

dt
〈u (t) , v〉L2 + a (u (t) , v) = 〈f (t) , v〉L2 , ∀v ∈ V, t ∈ (0, T )

and
u (0) = u0.

The definition of the bilinear form a (·, ·) is

a (u, v) =

ˆ
Ω

 d∑
i,j=1

aij
∂u

∂xj

∂v

∂xi
−

d∑
i=1

(
biu

∂v

∂xi
− civ

∂u

∂xi

)
+ a0uv

 dx. (1.15)

The nonhomogeneous Dirichlet boundary conditions are treated the same way
they were treated in the elliptic case, using the Dirichlet lift; the same holds for
the Neumann boundary conditions.

1.6 Second-order hyperbolic equations

The form of an hyperbolic equation can be expressed with the equation

∂2u

∂t2
+ Lu = f,

where L is en elliptic operator of the form

L =

d∑
i,j=1

∂

∂xi

(
aij

∂

∂xj

)
.

As in the case of parabolic equations we are interested in solving the equation
in the time cylinder ZT = Ω × (0, T ), with Ω ⊂ Rd an open bounded set with
Lipschitz-continuous boundary.

1.6.1 Weak formulation

Given the definition of the problem and the definitions of Sub-subsection 1.5.1
we can formulate the problem: given f ∈ L2 (ZT ) and the initial conditions u0 ∈
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H1
0 (Ω) and u1 ∈ L2 (Ω), find a function u ∈ C

(
[0, T ] ;H1

0 (Ω)
)
∩C1

(
[0, T ] ;L2 (Ω)

)
such that

d2

dt2
〈u (t) , v〉L2 + a (u (t) , v) = 〈f (t) , v〉L2 , ∀v ∈ H1

0 (Ω) , t ∈ (0, T )

u (0) = u0

du

dt
(0) = u1

where the definition of a (·, ·) is that given in Equation (1.15).
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Chapter 2

Finite Element Method

A very efficient and widely used method for approximating solutions of PDEs
is the Finite Element Method. In this chapter the fundamental elements are
presented. In Section 2.1 we describe the idea of the Galerkin method, which is
necessary to obtain a discrete problem, so that a solution u ∈ V , where V is a
space of infinite dimension, is approximated with a function un ∈ Vn with Vn of
finite dimension. When the space Vn comprise piecewise-polynomial functions
only, the Galerkin method is called Finite Element Method. FEM divides the
domain of the problem in finite elements, and defines the functions belonging
to Vn on them. In Section 2.2, the finite elements are formally defined. In 2.3
one-dimensional problems are examined, and the order of the polynomials is
discussed. Two-dimensional and three-dimensional problems are reported in 2.4
and 2.5. In 2.6 the description of the geometry is taken into account, and in 2.7
integration over this geometry is analyzed. Some discussions on performance
and efficiency are then proposed.

2.1 Galerkin method

The Galerkin method faces the problem of finding a function u belonging to a
Hilbert space V such that

a (u, ϕ) = l (ϕ) , ∀ϕ ∈ V (2.1)

with a (·, ·) : V × V → R and l (·) : V → R. The problem expressed by the
equation (2.1) is formulated in a space V of infinite dimensions. It is not possible
therefore to find a solution as a function of an infinite number of unknown
parameters. Hence, the idea of the method is to reduce the dimension of the
space V , defining a sequence of subspaces such that

Vn ⊂ Vn+1 ⊂ . . . ⊂ V. (2.2)

In each subspace it is possible to find an approximate solution of the problem
of the equation (2.1). If we consider the sequence of solutions un ∈ Vn, n =
1, . . . ,+∞ it can be seen that they converge to the exact solution u ∈ V

lim
n→+∞

‖un − u‖ = 0.
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The problem of finding a solution un ∈ Vn satisfying

a (un, ϕ) = l (ϕ) , ∀ϕ ∈ Vn (2.3)

is called discrete problem.
The solution to the problem (2.3) can be found considering that un is a

function belonging to a space of finite dimension which is also a linear space
dim (Vn) = Nn, and so it can be expressed as a linear combination of the basis
functions:

un =

Nn−1∑
i=0

ūivi

where {vi}Nn−1
i=0 is a basis for the space Vn. By substitution in (2.3) we get

a

(
Nn−1∑
i=0

ūivi, ϕ

)
= l (ϕ) , ∀ϕ ∈ Vn.

Considering the linearity of the a (·, ·) operator it is possible to move the coef-
ficients of the linear combination outside of the operator:

Nn−1∑
i=0

ūia (vi, ϕ) = l (ϕ) , ∀ϕ ∈ Vn.

The equation needs to be an identity for all the functions ϕ ∈ Vn and so even
for the basis functions {vj}Nn−1

j=0 . We obtain:

Nn−1∑
i=0

ūia (vi, vj) = l (vj) , j = 0, . . . , Nn − 1. (2.4)

It is possible to write equation (2.4) using matrices:

Sn · Ūn = F n,

where
Sn = [a (vi, vj)]

Nn−1
i,j=0

is the stiffness matrix,
Ūn = [ūi]

Nn−1
i=0

is the unknown vector and

F n = [l (vj)]
Nn−1
i=0

is the force vector .
Remark 2.1. In this presentation the subscript n has been used to distinguish
between Galerkin subspaces. However, the subscript h is often used, and it
indicates the size of the elements of the mesh1, as we will see afterwards in
Subsection 2.3.1. Nothing changes in what has been said, as h can be seen as a
function h (n) so that in the Galerkin procedure

lim
n→+∞

un = lim
h(n)→0

uh(n).

1The mesh is a subdivision of the domain. It will be explained in more details afterwards.
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2.1.1 Convergence
Theorem 2.2. Let V be an Hilbert space and V1 ⊂ V2 ⊂ . . . ⊂ V a sequence of
its finite dimensional subspaces such that

+∞⋃
n=1

Vn = V.

Let a (·, ·) : V × V → R be a bounded bilinear V-elliptic form and l ∈ V ′. Then

lim
n→+∞

‖u− un‖V = 0. (2.5)

Remark 2.3. By saying that (2.5) we say that the Galerkin method converges
to the exact solution when approximating with spaces nearer and nearer to the
original space V .

2.2 Nodal elements and unisolvency
A fundamental concept in finite element analysis is that of the nodal element.
A possible formal definition can be given:

Definition 2.4. The nodal finite element is a triple (K,P,L) where

• K ⊂ Rd is a bounded domain with Lipschitz-continuous boundary;

• P is a space of polynomials defined on the domain K with dim (P ) = NP ;

• L = {L0, L1, . . . , LNP−1} is a set of linear forms (called degrees of freedom
(DOF)) whose definition is

Lj : g ∈ P → g (xj) ∈ R

where the xj ’s are the nodal points.

Given the definition of nodal finite element, it is important to define the
concept of unisolvency : this is a property a nodal finite element is required to
have so that it is guaranteed that the vector

Ūn = S−1
n · F n

identifies a unique polynomial

un =

n−1∑
i=0

ūivi

where un is a solution of the discrete problem and v0, v1, . . . , vn−1 is a basis of
the space where to find the solution.

Definition 2.5. A nodal finite element (K,P,L) is said to be unisolvent if for
every g ∈ P

L0 (g) = L1 (g) = . . . = LNP−1 (g) = 0⇒ g = 0.
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Lemma 2.6. Assuming (K,P,L) is a unisolvent nodal finite element, given
any set of numbers {g0, g1, . . . , gNP−1} ∈ RNP , with dim (P ) = NP , there exists
a unique polynomial g ∈ P so that

L0 (g) = g0, L1 (g) = g1, . . . , LNP−1 (g) = gNP−1.

Definition 2.7. Assuming (K,P,L) is a nodal finite element where dim (P ) =
NP , a set of functions P = {v0, v1, . . . , vNP−1} is a nodal basis of P if it is true
that

Li (vj) = δij , ∀0 ≤ i, j ≤ NP − 1. (2.6)

In this case the functions vi are called nodal shape functions.

Given these definitions it is possible to enunciate the theorem on unisolvency.

Theorem 2.8. Consider a nodal finite element (K,P,L) with dim (P ) = NP .
The finite element is unisolvent if and only if there exists a unique nodal basis
P = {v0, v1, . . . , vNP−1} ⊂ P .

Theorem 2.8 allows the definition of a procedure for checking the unisolvency
of a defined nodal finite element.

1. Define the arbitrary basis {v0, v1, . . . , vNP−1}.

2. Build the Vandermonde matrix L = [Li (vj)]
NP−1
i,j=0 .

3. If L is invertible the element is unisolvent, otherwise it’s not. If L−1 exists,
then it has the coefficients ajk, j = 0, 1, . . . , NP − 1 in its kth column.

Another important definition is that of the local nodal interpolant. The in-
terpolation on finite elements is a procedure that takes a function g ∈ V (Ωh)
and produces a suitable piecewise-polynomial representant in the finite element
space gh,p ∈ Vh,p (Ωh), where Ωh is an approximation of the domain Ω, which
can even be exact, and Vh,p is the space of piecewise-polynomials which will be
defined more precisely in Section 2.4.

Definition 2.9. Let {v0, . . . , vNP−1} be the unique nodal basis for the unisol-
vent finite element (K,P,L). Let g ∈ V , where P ⊂ V , be a function for which
the values L0 (g) , . . . , LNP−1 (g) are defined. Then the local nodal interpolant
is defined as

IK (g) =

NP−1∑
i=0

Li (g) vi.

Interpolation on the finite elements will be even clearer when Theorem 2.24
will be enunciated.

2.2.1 Reference maps and isoparametric concept
An important concept in FEM is that of the affine reference map and of the
reference domain, as it makes the formulation and the implementation of FEM
systems more simple and efficient. The idea is to work on a reference domain
using a suitable set of nodal shape functions defined on it, reducing every other
nodal finite element to the reference by way of an affine reference map. More
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precisely, we can define a reference domain K̃, a set of nodal shape functions on
K̃ where Nen is the number of nodes of the element and a reference map

xKm : K̃ → Km

so that it is possible to map the nodal shape functions from the reference domain
to the domain Km without the need to define nodal shape functions on every
domain of the mesh.

A reference map makes us able to map generally arbitrarily curved elements
of the mesh to reference elements. If the edges or the faces of the elements
are parametrized by non-polynomial functions, then the reference map is non-
polynomial. For an extensive study on the construction of non-polynomial ref-
erence maps see [31].

In order to make the implementation more efficient and simple, it is possible
to consider an approximation of reference maps called isoparametric. Isopara-
metric reference maps are easier to store and to handle, partial and inverse
derivatives can be calculated more efficiently. Reference maps are, so, approx-
imated by polynomial functions that, for each element K ∈ Mh,p, are defined
as a linear combination of the shape functions of the reference domain with
vector-valued coefficients. The isoparametric concept is commonly attributed
to [33, 20] and is based upon the use of the same shape functions for the defini-
tion of the reference maps and for the approximate solution of the problem. It
has to be noticed anyway that no relation between reference maps and approx-
imate solution exists. For lowest-order elements:

Definition 2.10. Let xKm : K̃ → Km be of the form

x (ξ) =

Nen−1∑
i=0

v
ξi
K̃
x

(m)
i

where xi is the ith node of the element Km and v
ξi
K̃

is the ith nodal shape
function. If the element interpolation function uh,p can be written as

uh,p (ξ) =

Nen−1∑
i=0

v
ξi
K̃
ū

(m)
i (2.7)

where ū(m)
i is the ith degree-of-freedom of the element Km, the element is said

to be isoparametric.

2.2.2 Nodal elements and convergence of the Galerkin
method

A fundamental condition when building nodal elements is that it is desirable
(and in practice necessary) that nodal elements are designed in a way such that
as the mesh is refined, the solution of the Galerkin method converges to the
exact solution. This happens when the refinement generates a situation like the
one reported in 2.1.1.

It is possible to enunciate three conditions, which are only sufficient and not
necessary, for the convergence of the Galerkin method. Shape functions need to
be:
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Condition 2.11. smooth (C1 shape functions) on the element interior;

Condition 2.12. continuous on the boundary of each element;

Condition 2.13. complete.

Condition 2.11 and 2.12 guarantee that the first derivatives which are to be
computed exist. Guaranteeing C0 at the boundaries means we will have, at
worst, finite jumps in the first derivatives. If we permitted discontinuities, we
would have deltas in the derivatives and squares of the delta function would
appear in the calculation of the stiffness integral. The completeness property
requires, instead, that the element interpolation function is capable of exactly
representing an arbitrary linear polynomial (when considering lowest-order ele-
ments) when the nodal degrees-of-freedom are given values in accordance with
it. Completeness is reasonable when thinking that, as the mesh is refined, the
exact solution approaches constant values over an element. This property as-
sures that constant and linear functions can be represented.

2.2.3 Convergence of isoparametric elements

Definition 2.14. A mapping xKm : K̃ → Km ⊂ Rd is said to be one-to-one if
for each pair of points ξ1 and ξ2 ∈ K̃ such that ξ1 6= ξ2, then x (ξ1) 6= x (ξ2).

Definition 2.15. A mapping xKm : K̃ → Km ⊂ Rd is said to be onto if
K̃ = x

(
K̃
)
.

As a consequence of the inverse function theorem, if xKm is:

Condition 2.16. one-to-one;

Condition 2.17. onto;

Condition 2.18. Ck, k ≥ 1;

Condition 2.19. JxKm (ξ) > 0, ∀ξ ∈ K̃,

then the inverse mapping ξKm = x−1
Km

: Km → K̃ exists and is Ck.

Proposition 2.20. Let the reference map satisfy all the conditions from 2.16
to 2.19. Then the smoothness requirement of point 1 is satisfied as well.

Remark 2.21. In practice, the mappings satisfy all the points from 2.16 to 2.19,
with the exception of mappings defining degenerations with coalesced nodes,
like the case of the triangular domain, which is seen as a quadrilateral with a
edge of length 0. In this case Condition 2.19 is not satisfied, in fact the Jacobian
determinant vanishes at certain nodal points. With the exception of these points
however, the mapping ξKm remains smooth.

The third convergence condition is verified if the following proposition holds.

Proposition 2.22. If
∑Nen−1
i=0 v

ξi
K̃

= 1, then the completeness condition is sat-
isfied for isoparametric elements.
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Proof. Supposing d = 3 (the same holds for other values) and lowest-order
elements

υh,p (ξ) =

Nen−1∑
i=0

v
ξi
K̃
ῡi,

=

Nen−1∑
i=0

v
ξi
K̃

(
c0 + c1x

(m)
i + c2y

(m)
i + c3z

(m)
i

)
,

= c0

(
Nen−1∑
i=0

v
ξi
K̃

)
+ c1

(
Nen−1∑
i=0

v
ξi
K̃
x

(m)
i

)
+ c2

(
Nen−1∑
i=0

v
ξi
K̃
y

(m)
i

)
+

+c3

(
Nen−1∑
i=0

v
ξi
K̃
z

(m)
i

)
,

= c0

(
Nen−1∑
i=0

v
ξi
K̃

)
+ c1x+ c2y + c3z,

by using both the definition of reference map and nodal interpolant.

The convergence condition 2.12 has to be verified case by case, but it is quite
simple to satisfy.

2.3 One-dimensional problems

As a simple introduction to the framework, one-dimensional problems are pre-
sented. In 2.4 this presentation will be generalized to two-dimensional problems.

2.3.1 Analysis with lowest-order elements

We start from the weak formulation for a one-dimensional elliptic problem,
which is the same written in a more general form in (1.13):

a (υ, ϕ) = l (ϕ) , ∀ϕ ∈ H1 (Ω) (2.8)

with

a (υ, ϕ) =

ˆ
Ω

(a1υ
′ · ϕ′ + a0υϕ) dx

l (ϕ) =

ˆ
Ω

(fϕ− a1γ
′ · ϕ′ − a0γϕ) dx+

[
a1 (υ + γ)

′
ϕ
]b
a

equipped with the boundary conditions

υ = 0, ∀x ∈ ΓD

(υ + γ)
′

= gN , ∀x ∈ ΓN

where u = υ + γ and γ = gD in ΓD, a sequence of steps is needed to get an
approximation.
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Mesh In one dimension, the domain Ω can be as the open interval (a, b), which
can then be partitioned in Mn intervals

a = x0,n < . . . < xMn,n = b.

These intervals form the so called mesh of the domain Ω in one dimension

Mn = {K1,n, . . . ,KMn,n}

where
Ki,n = (xi−1,n, xi,n)

is the ith nodal finite element (described in general form in 2.2) and the xi’s are
called grid vertices. It is also possible to define the mesh diameter h (n) as

h (n) = max
1≤i≤Mn

(xi−1,n − xi,n) .

Application of the Galerkin method The Galerkin subspace Vn ⊂ V con-
sists (in FEM) of piecewise-polynomial functions of degree pi ≥ 1 defined on
the finite elements

Vn = {v ∈ V : v ∈ P pi (Ki,n)∀i = 1, . . . ,Mn} . (2.9)

A good choice of basis functions consists of functions with small support for
which as many as possible of them are disjoint. This way the term a (vi, vj) is
zero each time vi and vj are disjoint, generating a sparse stiffness matrix, which
is far simpler and more efficient to handle by computers.

The most used basis for the space Vn is the one formed by Mn− 1 functions
of degree pm = 1, ∀m defined by (suppose from now on that every xi and Ki is
referred to the current mesh so that xi = xi,n and Ki = Ki,n):

vi (x) =


x− xi−1

xi − xi−1
, x ∈ Ki

xi+1 − x
xi+1 − xi

, x ∈ Ki+1

0,
{
x ∈ (a, b) |x /∈ Ki ∨ x /∈ Ki+1

} , i = 1, . . . ,Mn − 1.

(2.10)
The shape functions

v0 =
x0 − x
x1 − x0

, x0 ≤ x ≤ x1,

vMn
=

x− xMn

xMn
− xMn−1

, xMn−1 ≤ x ≤ xMn
,

are related to the boundary nodes. All these functions are called hat functions
or roof functions and, when used in FEM, are named basis or shape or vertex
functions. In this case the space Vn is a piecewise linear finite element space.
Given this space, the function υn is written

υn =
∑

i∈G\GD

ῡivi,

where
G = {0, . . . ,Mn} ,
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GD = {i|i = 0, . . . ,Mn, xi ∈ ΓD} .

The system of algebraic equations is written with the following matrices

Sn =

[ˆ
Ω

(
a1v
′
i · v′j + a0vivj

)
dx

]
i,j

, (2.11)

Ῡn = [ῡi]i ,

F n =

[ˆ
Ω

(fvi − a1γ
′ · v′i − a0γvi) dx+

[
a1 (υ + γ)

′
vi
]b
a

]
i

, (2.12)

where i, j ∈ G\GD. A possible choice for γ is

γ (x) =
∑
i∈GD

u (xi) vi (x) .

The ith nodal finite element is therefore defined by the triple
(
Ki, P

1 (Ki) ,L
)

and is called lowest-order element.

Example 2.23. Consider the problem of solving u′′ = 0, x ∈ Ω = (0, 1)
u (0) = 0
u (1) = 1

.

It is possible to find a classical solution u ∈ C2 (Ω) ∩ C
(
Ω̄
)
integrating twice

both members: ¨
Ω

u′′dxdx =

¨
Ω

0dxdx⇒ u (x) = c1x+ c2

and then imposing the boundary conditions: u (x) = c1x+ c2, x ∈ Ω = (0, 1)
u (0) = 0
u (1) = 1

⇒ u (x) = x. (2.13)

The problem is equipped with nonhomogeneous Dirichlet boundary conditions,
so it is necessary to define a Dirichlet lift γ and the new function υ so that
u = γ + υ. A possible choice for γ is

γ = 0 · v0 + 1 · vMn
,

where v0 is a roof function centered on the left boundary of Ω and vMn a roof
function centered on the right boundary of Ω. By substitution in Equation
(2.14) the new problem reads (u = u (x) and v = v (x)): (γ + υ)

′′
= 0, x ∈ Ω = (0, 1)

υ (0) = 0
υ (1) = 0

.

It is possible furthermore to derive a weak formulation of the problem following
the four steps of sub-subsection 1.4.1. Multiply by ϕ ∈ C∞0 (Ω):

(γ + υ)
′′
ϕ = 0.
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Then integrate over Ω: ˆ
Ω

(γ + υ)
′′
ϕdx = 0

and reduce the maximum degree of the derivatives using the technique of inte-
gration by parts2 :

ˆ
Ω

(γ + υ)
′′
ϕdx =

[
ϕ (γ + υ)

′]
∂Ω
−
ˆ

Ω

ϕ′ (γ + υ)
′
dx.

Making use of the last equation and since ϕ ∈ C∞0 (Ω) vanishes on the boundary,
the equation can be simplified to

ˆ 1

0

ϕ′υ′dx = −
ˆ 1

0

ϕ′γ′. (2.14)

It is necessary now to use the Galerkin method to obtain a discrete problem from
(2.14). Approximating the problem in a subspace Vn with dim (Vn) = Mn − 1
we get the matrices:

Sn =

[ˆ 1

0

v′iv
′
jdx

]Mn−1

i,j=1

,

Ῡn = [ῡi]
Mn−1
i=1 ,

F n =

[
−
ˆ 1

0

v′iγ
′dx

]Mn−1

i=1

,

where the vi’s are the roof functions defined in (2.10). If a partition of the
domain Ω with Mn−1 internal nodes is built, then the linear system Sn · Ῡn =
F n can be solved for Ῡn. The approximate solution is then

un (x) =

Mn−1∑
i=1

ῡivi (x) + γ.

In this particular case, un ≡ u.
Consider the problem

1

50
· u′′ = x, x ∈ Ω = (0, 1)

u (0) = 0
u (1) = 1

.

The same procedure of Example 2.23 can be followed to obtain the exact solution
and the discrete formulation. The exact solution is

u (x) =
x

3

(
25x2 − 22

)
.

2If f (x) = f and g (x) = g are two continuously differentiable functions then:
ˆ b

a
fg′dx = [fg]ba −

ˆ b

a
f ′gdx.
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Figure 2.1: Representation of the exact solution (red curve) and of the approx-
imate (black curve). The plot at the bottom represents the basis functions vi
used in FEM.

If a mesh with three elements is considered, the linear system is Sn · Ῡn = F n
where

Sn =

[ˆ 1

0

− 1

50
v′iv
′
jdx

]2

i,j=1

,

Ῡn = [ῡi]
2
i=1 ,

F n =

[ˆ 1

0

(
xvi +

1

50
v′iγ
′
)
dx

]2

i=1

.

Figure 2.1 represents the exact solution compared with the approximate.

2.3.2 Transformation of the model to the reference do-
main

Once the stiffness matrix and the force vector are found, like in Equation (2.12)
and (2.11), it is sufficient to compute the integrals (typically approximation
methods can be used) and solve the linear system. However, that of Subsection
2.3.1 is a very simple case, in which we were able to define all the shape functions
and it is easy to compute the integrals. There are cases in which it is not simple
to define the shape functions and it is more efficient to change the formulation
using a reference map like stated in Subsection 2.2.1. We can try to do this for
this simple case as well.

So, our task is to define the reference map xKm : Ka → Km where Ka =
(ξ0, ξ1) = (−1, 1) is our reference domain. Currently, our vertex functions on
the reference domain can be simply found (they are piecewise-polynomials, and
in this section we employ a degree 1), and are

vξ0Ka (ξ) = − (ξ − 1)

2
, vξ1Ka (ξ) =

ξ + 1

2
.
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Once the shape functions are defined on the reference domain, the isoparametric
concept can be invoked, and we can express the reference map with

xKm (ξ) =

1∑
i=0

vξiKa (ξ)xi,m.

The result of this summation can be written as

xKm (ξ) = c
(m)
1 + c

(m)
2 ξ,

where
c
(m)
1 =

xm−1 + xm
2

, c
(m)
2 = JKm =

xm − xm−1

2
,

supposing Km = (xm−1, xm) as said before.

2.3.2.1 Finite element space

With the reference map, it is possible to redefine the space Vn defined in (2.9),
(the notation with the n is left for the notation with h = h (n) to remark the
relation to the chosen mesh)

Vh,p = {v ∈ V : v|Km ∈ P pm (Km) ∀m = 1, 2, . . . ,Mh,p}

with

Vh,p = {v ∈ V : (v|Km ◦ xKm) (ξ) ∈ P pm (Ka) ∀m = 1, 2, . . . ,Mh,p} ,

i.e. Vh,p is the set containing all the functions in V defined in each domain Km

which, once transformed to the reference domain, is a polynomial of degree pm
on Ka. As stated above, it is no more needed to define shape functions on each
domain. It is only necessary to have one reference map for each domain ad a
set of shape functions on the reference domain.

2.3.2.2 Transformation of the equation to the reference domain

Consider again, for instance, the model of the problem (1.13): the next step is
to transform the weak form to the reference domain, so as to take advantage of
the reference map. The bilinear and the linear forms can be calculated using
the two following integrals:

a (υ, ϕ) =

ˆ
Ω

(a1υ
′ · ϕ′ + a0υϕ) dx,

l (ϕ) =

ˆ
Ω

(fϕ− a1γ
′ · ϕ′ − a0γϕ) dx+

[
a1 (υ + γ)

′
ϕ
]b
a
.

The first thing to do is to divide the integrals into a summation over the
elements as Ω =

⋃Mh,p

m=1 Km:

a (υ, ϕ) =

Mh,p∑
m=1

ˆ
Km

(a1υ
′ · ϕ′ + a0υϕ) dx,
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l (ϕ) =

Mh,p∑
m=1

ˆ
Km

(fϕ− a1γ
′ · ϕ′ − a0γϕ) dx+

[
a1 (υ + γ)

′
ϕ
]b
a
.

Then, using the result (2.4) of the Galerkin method, the problem can be rewrit-
ten to: find the function υh,p ∈ Vh,p (Ω) so that

υh,p =
∑

i∈G\GD

ῡivi,

where
span

(
{vj}Mh,p

j=0

)
= Vh,p (Ω) ,

and

∑
i∈G\GD

ῡi

Mh,p∑
m=1

ˆ
Km

(
a1v
′
iv
′
j + a0vivj

)
dx =

=

Mh,p∑
m=1

ˆ
Km

(
fvj − a1v

′
iv
′
j − a0γvj

)
+
[
a1 (υ + γ)

′
vj
]b
a
, j ∈ G\GD.

Transformation of functions to the reference domain Functions are
transformed to the reference domain by simply composing them with the refer-
ence map:

ã
(m)
l (ξ) = (al ◦ xKm) (ξ) = al (xKm (ξ)) , l = 0, 1

ṽ
(m)
l (ξ) = (vl ◦ xKm) (ξ) = vl (xKm (ξ)) , l = i, j

f̃ (ξ) = (f ◦ xKm) (ξ) = f (xKm (ξ)) ,

γ̃ (ξ) = (γ ◦ xKm) (ξ) = γ (xKm (ξ)) .

Transformation of derivatives to the reference domain The transfor-
mation of the derivative can be found using the chain rule(

ṽ
(m)
l (ξ)

)′
= (vl ◦ xKm)

′
(ξ) = v′l (x) |x=xKm (ξ)JKm (ξ) , l = i, j,

(
γ̃(m) (ξ)

)′
= (γ ◦ xKm)

′
(ξ) = γ′ (x) |x=xKm (ξ)JKm (ξ) .

Transformation of integrals to the reference domain The transforma-
tion of the integrals is simple applying the Substitution theorem. The appli-
cation of the Substitution theorem allows the transformation of the bilinear
form

a (vi, vj) =

Mh,p∑
m=1

ˆ
Km

(
a1v
′
iv
′
j + a0vivj

)
dx

to the reference domain. Let f be

f (x) = a1 (x) v′i (x) v′j (x) + a0 (x) vi (x) vj (x) .
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We can write

a (vi, vj) =

Mh,p∑
m=1

ˆ
xKm(K̃)

f (x) dx =

Mh,p∑
m=1

ˆ
K̃

f (xKm (ξ)) JxKmdξ,

where f can be expressed as

f (xKm (ξ)) =
1

J2
xKm

ã
(m)
1

(
ṽ

(m)
i

)′
(ṽj)

′
+ ã

(m)
0 ṽ

(m)
i ṽ

(m)
j .

Following the same process we can write

l (vj) =

Mh,p∑
m=1

ˆ
K̃

g (xKm (ξ)) JxKmdξ +
[
a1 (υ + γ)

′
ϕ
]b
a

where g can be expressed as

g (xKm (ξ)) = f̃ (m)ṽ
(m)
j − ã(m)

0 γ̃(m)ṽ
(m)
j +

1

J2
Km

ã
(m)
1

(
γ̃(m)

)′ (
ṽ

(m)
j

)′
.

2.3.3 Exactness at the nodes
It is important to remark that it’s possible to prove that the values found for
the DOFs are exact.

Theorem 2.24. u (xi) = uh (xi), i = 0, . . . ,Mh,p.

Proof. The proof of this theorem can be found in [17].

2.3.4 Higher-order elements
It is possible to consider piecewise-polynomials (i.e. polynomials defined on the
elements) of degree higher than 1. The elevation of the degree is a type of
refinement named p-refinement as it should lead to approximations closer to the
exact solution, leaving the mesh unchanged.

2.3.4.1 Lagrange nodal shape functions

The construction of shape functions is an important task in FEM as a wrong
basis could make the solution of the linear system difficult. One approach is
that which employs the Lagrange interpolation. The task is to find a basis
P = {lLag,1, lLag,1, . . . , lLag,pm+1} in the space P pm

(
K̃
)
, defining the shape

functions on the reference domain. The shape functions are associated to an
equal number of nodal points defined on the reference domain (suppose it is
K̃ = (−1, 1)) using the Lagrange interpolation conditions lLag,j (yk) = δjk. The
shape functions can be defined by the equation

lLag,i (ξ) =
∏

1≤j≤pm+1,j 6=i

(ξ − yj)
(yi − yj)

, i = 1, 2, . . . , pm + 1.

Algorithm 2.1 computes the Lagrange interpolating polynomials for the given
points to be interpolated.
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Algorithm 2.1 Algorithm to compute the Lagrange polynomial interpolating
the points provided.

1% lagrangePoly determines the Lagrange in t e rpo l a t i n g polynomial
2% in t e rpo l a t i n g the points provided .
3% Input :
4% X: x coordinates of the points to be in t e rpo l a t ed ;
5% Y: y coordinates of the points to be in t e rpo l a t ed ;
6% XX: opt iona l argument to ge t the va lues of the polynomial in the
7% values contained in the vector XX.
8% Output :
9% P: c o e f f i c i e n t s of the polynomial in h i ghes t order f i r s t ;
10% R: x coordinates of the N−1 extrema of the r e su l t i n g polynomial ;
11% S: y coordinates of the extrema .
12function [P, R, S ] = lagrangePoly (X, Y, XX)
13% Make sure tha t X and Y are row vec tors
14i f s ize (X, 1 ) > 1 ; X = X’ ; end
15i f s ize (Y, 1 ) > 1 ; Y = Y’ ; end
16i f s ize (X, 1 ) > 1 | | s ize (Y, 1 ) > 1 | | s ize (X, 2 ) ~= s ize (Y, 2 )
17error ( ’ both␣ inputs ␣must␣be␣ equal−l ength ␣ vec to r s ’ )
18end
19N = length (X) ;
20pva l s = zeros (N,N) ;
21% Calcu late the polynomial weights for each order
22for i = 1 :N
23% the polynomial whose roots are a l l the va lues of X except t h i s one
24pp = poly (X( ( 1 :N) ~= i ) ) ;
25% sca l e so i t s va lue i s e xac t l y 1 at t h i s X point (and zero
26% at others , of course )
27pva l s ( i , : ) = pp . / polyval (pp , X( i ) ) ;
28end
29% Each row g ive s the polynomial tha t i s 1 at the corresponding X
30% point and zero everywhere e l se , so weight ing each row by the
31% des ired row and summing ( in t h i s case the po l y coe f f s ) g i ve s
32% the f i n a l polynomial
33P = Y∗pva l s ;
34i f nargin==3
35% output i s YY corresponding to input XX
36YY = polyval (P,XX) ;
37% assign to output
38P = YY;
39end
40i f nargout > 1
41% Extra return arguments are va lues where dy/dx i s zero
42% Solve for x s . t . dy/dx i s zero i . e . roots of d e r i v a t i v e polynomial
43% der i va t i v e of polynomial P sca l e s each power by i t s power , downshi f t s
44R = roots ( ( (N−1):−1:1) . ∗ P( 1 : (N−1)) ) ;
45i f nargout > 2
46% Calcu late the ac tua l va lues at the points of zero de r i v a t i v e .
47S = polyval (P,R) ;
48end
49end
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Figure 2.2: Example of the effects of the Runge’s phenomenon. Langrange
interpolating polynomials interpolating 4, 5 and 6 points.

2.3.4.2 Runge’s phenomenon

Analyzing the function

f (x) =
1

1 + 25x2
,

Runge found that, interpolating at equidistant points between −1 and 1 with
polynomials Pn (x) of increasing degree n, the interpolation oscillates towards
the end of the interval. It can be proven, in fact, that

lim
n→∞

(
max
−1≤x≤1

|f(x)− Pn(x)|
)

= +∞.

An example of the effects caused by the Runge’s phenomenon can be seen
in Figure 2.2. However, the Weierstrass approximation theorem turns out to be
useful in this regard:

Theorem 2.25. Suppose f is a continuous complex-valued function defined on
the real interval [a, b]. For every ε > 0, there exists a polynomial function P
over C such that for all x in [a, b], we have |f (x)− P (x)| < ε, or equivalently,
the supremum norm ‖f (x)− P (x)‖ < ε . If f is real-valued, the polynomial
function can be taken over R.

This means there is some sequence of polynomials for which the error goes
to zero. So, using equidistant nodal points is a possible solution, but there are
better choices: Chebyshev nodal points and Gauss-Lobatto nodal points.
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2.3.4.3 Chebyshev and Gauss-Lobatto nodal points

Assuming we want to define nodal shape functions of degree pm > 1 in the
domain K̃ = (−1, 1), the Chebyshev points are defined by the equation

yj = cos

(
πj

p

)
, j = 0, 1, . . . , pm,

whereas the Gauss-Lobatto nodal points are the roots of the function(
1− x2

)
L′pm (x) .

The function Lpm (x) is the Legendre polynomial of degree pm which can be
calculated using the Rodrigues’ formula

Lpm (x) =
1

2pm · pm!
·
dpm

((
x2 − 1

)pm)
dxpm

. (2.15)

The Legendre polynomials are the solutions to the Legendre differential equation

d

dx

((
1− x2

)
· d
dx
Lk (x)

)
+ n (n+ 1)Lk (x) = 0.

This ODE is commonly encountered in physics and other technical fields.
Shape functions associated with grid vertices are called vertex functions,

shape functions associated with nodal points are called bubble functions.

Nodal basis of the space Vh,p Given the nodal shape functions lLag,i (ξ),
i = 1, 2, . . . , pm+1, it is possible to redefine the choice for the Galerkin subspace
Vh,p. It is common to assume that all nodal finite elements have the same degree,
but this is not mandatory, so suppose it is pm for the nodal finite element Km.
A basis of the space can be made up by Mh,p − 1 vertex functions (Mh,p is the
number of nodal finite elements)

vi =

{(
lLag,pm+1 ◦ x−1

Ki

)
(x) , x ∈ Ki(

lLag,0 ◦ x−1
Ki+1

)
(x) , x ∈ Ki+1

and by the
∑Mh,p

m=1 (pm − 1) bubble functions(
lLag,2 ◦ x−1

Km

)
(x) ,

(
lLag,3 ◦ x−1

Km

)
(x) , . . . ,

(
lLag,pm ◦ x−1

Km

)
(x) .

2.3.4.4 Lobatto hierarchic shape functions

An alternative way of building a basis is to use a hierarchical approach: an
initial basis is defined, and bases of higher dimension are built adding functions
to the previous basis defined. An example of good hierarchic shape functions
for elliptic problems in one dimension are the Lobatto polynomials

lLob,0 (ξ) =
1− ξ

2
, lLob,1 (ξ) =

1 + ξ

2
,

lLob,k =

ˆ ξ

−1

Lk−1 (ψ) dψ, 2 ≤ k,

where Lk−1 is the Legendre polynomial which can be calculated using (2.15).
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Nodal basis of the space Vh,p As already done for the Lagrange shape
functions, once the functions are defined, a new space Vh,p can be constructed.
The nodal vertex functions are defined by the equation

vi (x) =

{(
lLob,1 ◦ x−1

Ki

)
(x) , x ∈ Ki(

lLob,0 ◦ x−1
Ki+1

)
(x) , x ∈ Ki+1

,

which indicates they are linear functions, the nodal bubble functions are defined
by (

lLob,2 ◦ x−1
Km

)
(x) ,

(
lLob,3 ◦ x−1

Km

)
(x) , . . . ,

(
lLob,pm ◦ x−1

Km

)
(x) .

2.4 Two-dimensional problems

In most cases problems are not one-dimensional but two- or three-dimensional.
We have, therefore, to define new elements to partition the geometry (simple
intervals can be used only in one-dimensional problems).

2.4.1 K1
q-elements

The K1
q-element is a well known nodal finite element used to create meshes on

two-dimensional domains.

Definition 2.26. A K1
q-element is a nodal finite element defined by the triple(

K,Q1 (K) ,L
)
where:

• K is a quadrilateral domain;

• Q1 (K) is the space of the polynomials of first degree defined on the domain
K;

• L is the set of degrees of freedom.

We need to define in particular the K1
q-element on the reference domain as

required by the concept explained in Subsection 2.2.1.

Definition 2.27. A K1
q-element defined on the reference domain is the element

K1,r
q defined by the triple

(
Kq, Q

1 (Kq) ,Lq
)
where:

• Kq is the domain (−1, 1)
2;

• Q1 (Kq) = span ({1, ξ, η, ξη});

• Lq = {Li}4i=1 where g ∈ Q1 (Kq) and Li : Q1 (Kq)→ R are

Li (g) = g (ξi) , i = 1, 2, . . . , 4,

ξ1 =

[
−1
−1

]
, ξ2 =

[
1
−1

]
, ξ3 =

[
−1
1

]
, ξ4 =

[
1
1

]
.
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Lemma 2.28. The nodal finite element
(
Kq, Q

1 (Kq) ,Lq
)
is unisolvent, and

the nodal basis of the space Q1 (Kq) consists of the vertex functions

v
ξ1

Kq
(ξ) =

(1− ξ) (1− η)

4
, v

ξ2

Kq
(ξ) =

(1 + ξ) (1− η)

4
,

v
ξ3

Kq
(ξ) =

(1− ξ) (1 + η)

4
, v

ξ4

Kq
(ξ) =

(1 + ξ) (1 + η)

4
.

Proof. The unisolvency can be proved by building the generalized Vandermonde
matrix L, which is found to be nonsingular. The nodal basis can be obtained
by computing the inverse of L.

We want to create the change of coordinates

ξ =

[
ξ
η

]
xKm
�
x−1
Km

x =

[
x
y

]
by way of a reference map xKm : Kq → Km. It’s time to invoke the isopara-
metric concept defined in Sub-subsection 2.2.1, adapted to the two-dimensional
problem. This means we would like to define the reference map through

xKm (ξ) =

4∑
i=1

v
ξi
Kq
x

(m)
i . (2.16)

Proposition 2.29. The reference map of Equation (2.16) satisfies

xKm (ξi) = x
(m)
i , i = 1, 2, . . . , 4

and
xKm (ei) = si, i = 1, 2, . . . , 4

where ei is the edge of the element in the reference domain and si is the edge of
the element.

Proposition 2.30. The nodal finite element
(
Km, Q

1 (Km) ,Lm
)
is unisolvent,

and the shape functions

vxiKm (x) =
(
v
ξi
Kq
◦ x−1

Km

)
(x) , i = 1, 2, . . . , 4,

constitute a unique nodal basis of the space Q1 (Km).

We want to determine if this element guarantees the convergence of the
Galerkin method. For this, we need to guarantee smoothness of the basis func-
tions, continuity on the boundary and completeness (see 2.2.2).

As said in Subsection 2.2.3, smoothness are almost always assured, unless
the element is too distorted. The degenerated triangle was an example case,
but even quadrilaterals with interior angles of more than 180° can make this
condition to be unsatisfied. This is caused by the fact that the inverse functions
ξ (xKm) and η (xKm) of the reference map could be not well defined. Away
from these cases of high degeneration, K1

q-elements guarantees smoothness of
the shape functions.
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We have to analyze the shape function to assure continuity on the boundary.
Let’s consider, for instance, the shape function defined on the node ξ1 on the
edge with η = 1

v
ξ1

Kq
(ξ) =

1− ξ
2

.

This is a one-dimensional linear shape functions already defined, and the same
holds for the other edges. After these considerations of the shape of the function
on the edges it is possible to guess that the shape function is an hyperbolic
paraboloid, which guarantees continuity on the boundaries.

Proving the completeness is very simple: according to 2.2.3 it is sufficient to
prove the sum to 1:

4∑
i=1

v
ξi
Kq

=
(1− ξ) (1− η)

4
+

(1 + ξ) (1− η)

4
+

+
(1− ξ) (1 + η)

4
+

(1 + ξ) (1 + η)

4
= 1.

2.4.2 K1
t -elements

Another type of well known element in the two-dimensional space is the K1
t -

element.

Definition 2.31. A K1
t -element is a nodal finite element defined by the triple(

K,P 1 (K) ,L
)
where:

• K is a triangular domain;

• P 1 (K) is the space of the polynomials of first degree defined on the domain
K;

• L is the set of degrees of freedom.

We need to define in particular the K1
t -element on the reference domain.

One of the possibilities in the definition of a triangular reference domain is the
triangle derived from the degeneration of the domain Kq, where the nodes ξ3

and ξ4 are coalesced into one node ξ3 = [0, 1]
T . In this case, the resulting shape

functions are

v
ξ1

Kt
(ξ) =

(1− ξ) (1− η)

4
, v

ξ2

Kt
(ξ) =

(1 + ξ) (1 + η)

4
, v

ξ3

Kt
(ξ) =

1 + η

2
.

Although the determinant of the Jacobian matrix is zero in ξ3, the derivatives
exist with respect to ξ and η. This is sufficient to have smoothness. In the same
way we did in 2.4.1, it is possible to show both continuity and completeness. This
means such a reference element assures the convergence of the Galerkin method.
Anyway, it has to be underlined that the determinant of the Jacobian matrix is
not constant. This means that, when integrating on this element, the Jacobian
has to be integrated numerically, and is rising the degree of the integrand, which
requires more integration points in Gauss quadrature (see Section 2.7).

Another possibility for a reference element is the following:

Definition 2.32. A K1
t -element defined on the reference domain is the K1

t -
element K1,r

t defined by the triple
(
Kt, P

1 (Kt) ,Lt
)
where:
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• Kt =
{

[ξ, η]
T

: η < ξ, η > −1, ξ > −1
}
;

• P 1 (Kt) = span ({1, ξ, η});

• Lt = {Li}3i=1 where g ∈ P 1 (Kt) and Li : P 1 (Kt)→ R are

Li (g) = g (ξi) , i = 1, 2, 3,

ξ1 =

[
−1
−1

]
, ξ2 =

[
1
−1

]
, ξ3 =

[
−1
1

]
.

Lemma 2.33. The nodal finite element
(
Kt, P

1 (Kt) ,Lt
)
is unisolvent, and

the nodal basis of the space P 1 (Kt) consists of the vertex functions

v
ξ1

Kt
(ξ) = −ξ + η

2
, v

ξ2

Kt
(ξ) =

1 + ξ

2
, v

ξ3

Kt
(ξ) =

1 + η

2
.

Proof. See proof of Lemma 2.28.

As we did in the case of the K1,r
q -element, we have to define the reference

map. This is simple to do; invoking the isoparametric concept we get

xKm (ξ) =

3∑
i=1

v
ξi
Kt

(ξ)x
(m)
i , (2.17)

and again the following proposition holds:

Proposition 2.34. The reference map of Equation (2.17) satisfies

xKm (ξi) = x
(m)
i , i = 1, 2, 3

and
xKm (ei) = si, i = 1, 2, 3

where ei is the edge of the element in the reference domain and si is the edge of
the element with domain Kt.

Proposition 2.35. The nodal finite element
(
Km, P

1 (Km) ,Lm
)
is unisolvent,

and the shape functions

v
x

(m)
i

Km
(x) =

(
v
ξi
Kt
◦ x−1

Km

)
(x) , i = 1, 2, 3

constitute a unique nodal basis of the space P 1 (Km).

Again, it is interesting to prove that the element Kt guarantees the conver-
gence. The continuity across the boundaries can be verified the same way it was
done in Subsection 2.4.1. The condition of completeness is automatic as this is
an isoparametric element. What’s important to note is that the determinant of
the Jacobian matrix is now constant

JxKm =

∣∣∣∣∣∣
x1,2 − x1,1

2

x1,3 − x1,1

2
x2,2 − x1,1

2

x2,3 − x2,1

2

∣∣∣∣∣∣ .
where it is assumed xi = [x1,i, x2,i]. This is a better choice as, this way, the
determinant of the Jacobian matrix doesn’t have to be integrated numerically.
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48 CHAPTER 2. FINITE ELEMENT METHOD

2.4.3 Analysis with lowest-order elements
Problems in two dimensions need some more steps than one-dimensional prob-
lems. The reference problem expressed in the equation (1.10) is again translated
to its weak formulation in (1.13): find a function υ ∈ H1 (Ω) such that

¨
Ω

(a1∇υ · ∇ϕ+ a0υϕ) dz =

¨
Ω

(fϕ− a1∇γ · ∇ϕ− a0γϕ) dz +

ˆ
ΓN

(a1gNϕ) dS, ∀ϕ ∈ H1 (Ω) .

What is needed is a process which goes through the approximations needed
to generate the linear system of equations S · Ῡ = F . Unfortunately, in the
two-dimensional case, some approximations are needed to reach the discrete
problem: these approximations are called variational crimes.

Approximation of the domain A 2D domain Ω needs, in general, to be
approximated with a domain Ωh. If Ω is a polygonal domain or if the boundary
∂Ω is piecewise-polynomial, then the approximation can be done exactly. In
case Ωh * Ω, then a variational crime is committed since the functions could
be evaluated where they are not defined.

Mesh The domain Ωh has to be covered with Mh elements

Mh,p = {Ki, i = 1, . . . ,Mh,p} .

Mh,p is the mesh defined on the domain.

Approximation of the boundaries In the first step it was necessary to
modify the domain Ω creating another domain Ωh,p. This means the boundary
∂Ω can be different from the new boundary ∂Ωh,p. A new variational crime
arises in case ∂Ω 6= ∂Ωh,p as the functions gD and gN defined respectively
in (1.7) and (1.9) could be undefined on ∂Ωh,p. It is therefore necessary to
redefine gD and gN on the boundaries of Ωh, choosing a new suitable partition
∂Ωh,p = ΓD,h,p ∪ ΓN,h,p. The new boundary conditions can be now written:

u (z) = gD,h,p (z) , ∀z ∈ ΓD,h,p,

∂u (z)

∂ν
= gN,h,p (z) , ∀z ∈ ΓN,h,p.

The Dirichlet lift needs to be approximated as well with a new function γh,p ∈
H1 (Ωh,p).

Approximation of the Hilbert spaces The space V on which the problem
is formulated is defined on the domain Ω. This means it is necessary to redefine
the space with another one,

Vh,p = {v ∈ C (Ωh,p) : v (z) = 0, ∀z ∈ ΓD.h,p,

v|Ki ∈ P p (Ki) if Ki is a triangle,

v|Ki ∈ Qp (Ki) if Ki is a quarilateral} . (2.18)
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defined on the approximated domain Ωh,p. Unfortunately, it is not possible to
guarantee Vh,p ⊂ V as the Galerkin method requires, so that it is possible that
another variational crime is committed. The same happens to the trial solutions
space:

Uh,p = {v ∈ C (Ωh,p) : v (z) = gD,h,p, ∀z ∈ ΓD.h,p,

v|Ki ∈ P p (Ki) if Ki is a triangle,

v|Ki ∈ Qp (Ki) if Ki is a quarilateral} . (2.19)

Approximate weak formulation It is necessary to approximate the weak
formulation according to the modifications done so far to the model of equation
(1.12): It’s now required to find the function υh,p ∈ Vh,p and γh,p ∈ Uh,p so that

¨
Ωh,p

(a1∇υh,p · ∇v + a0υh,pv) dz =

¨
Ωh,p

(fv − a1∇γh,p · ∇v − a0γh,pv) dz +

ˆ
ΓN,h,p

a1gN,h,pvdS, ∀v ∈ Vh,p.

Application of the Galerkin model The Galerkin method remains almost
unchanged: it is possible to express the unknown function υh,p as a linear combi-
nation of the basis functions of the space Vh,p not related to nodes with Dirichlet
boundary conditions. We define

G = {i|vi ∈ a nodal base of Vh,p} ,

GD = {i|vi ∈ a nodal base of Vh,p, xi ∈ ΓD,h,p} .

The unknown υh,p is then

υh,p =
∑

i∈G\GD

ῡivi,

and the Dirichlet lift can be written as well as

γh,p =
∑
i∈GD

gD,h,p (xi) vi,

assuming v1, . . . , vdim(Vh,p) is a nodal basis of the space Vh,p with dim (Vh,p) =
Nh,p. The new problem is now expressed by the system∑

i∈G\GD

ῡi

¨
Ωh,p

(a1∇vi · ∇vj + a0vivj) dz =

¨
Ωh,p

(fvj − a1∇γh,p · ∇vj − a0γh,pvj) dz +

ˆ
ΓN,h,p

a1gN,h,pvjdS (2.20)

for all j ∈ G\GD. We can notice as well that we can substitute the choice made
of Dirichlet lift ∑

i∈G\GD

ῡi

¨
Ωh,p

(a1∇vi · ∇vj + a0vivj) dz =
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¨
Ωh,p

fvjdz −
∑
i∈GD

¨
Ωh,p

a1gD,h,p (xi)∇vi · ∇vjdz+

−
∑
i∈GD

¨
Ωh,p

a0gD,h,p (xi) vivjdz +

ˆ
ΓN,h,p

a1gN,h,pvjdS.

for all j ∈ G\GD.

2.4.4 Transformation of the model to the reference do-
main

Like done in Subsection 2.3.2, we would like to use the reference map to work
with the model in the reference domain. For both the K1

q-elements and the
K1
t -elements we’ve already defined the reference maps. Let’s assume an hybrid

mesh with Mh,p = Mq +Mt nodes, where Mq is the number of K1
q-elements and

Mt is the number of K1
t -elements, a set {xi, i = 1, . . . , Nh,p} of grid vertices

that don’t belong to ΓD,h,p (unconstrained grid vertices).

Proposition 2.36. The dimension of the space Vh,p is Nh,p which is also the
number of unconstrained grid vertices.

2.4.4.1 Basis of the space Vh,p

We already defined the space we’re working with in Equation (2.19), but we
need a basis for this space. This is a little more complicated than in the one-
dimensional case: first of all we need to define a vertex patch S (i), which will
be the support of the shape function. It is defined as the union of all the mesh
elements which have xi among their nodes:

S (i) =
⋃

k∈N(i)

K̄m, N (i) = {m : Km ∈Mh,p,xi is vertex of Km} . (2.21)

Employing the same concept of the one-dimensional case, we define the shape
functions to be

vxiKm (x) =


(
v
ξr
Kq
◦ x−1

Km

)
(x) , x ∈ Km and Km is a quadrilateral(

v
ξr
Kt
◦ x−1

Km

)
(x) , x ∈ Km and Km is a triangle

0, x ∈ Ωh \ S (i)

. (2.22)

It can be shown that these vertex functions form a basis for the space Vh,p.

2.4.4.2 Transformation of the equation to the reference domain

Just like we did in Sub-subsection 2.3.2.2, the first step is to split the integral
of Equation (2.20) as a summation over the elements Km:

∑
i∈G\GD

ῡi

Mh,p∑
m=1

¨
Km

(a1∇vi · ∇vj + a0vivj) dz =

Mh,p∑
m=1

¨
Km

(fvj − a1∇γh,p · ∇vj − a0γh,pvj) dz +

Mh,p∑
m=1

ˆ
ΓN,h,p∩Km

a1gN,h,pvjdS,

(2.23)
j ∈ G\GD.
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Transformation of functions to the reference domain The transforma-
tion of the model requires first of all to transfer the function to the reference
domain. This is done again, like in Sub-subsection 2.3.2.2, composing functions
with the ◦ operator with the reference map xKm (ξ) = (xKm,1 (ξ) , xKm,2 (ξ)).
For a function ψ (ξ, η) = ψ (ξ), this results in:

ψ(m) (ξ) = (ψ ◦ xKm) (ξ) = ψ (xKm,1 (ξ) , xKm,2 (ξ)) .

Transformation of derivatives to the reference domain Again, like in
Sub-subsection 2.3.2.2, the chain rule is used:

∂ψ̃(m)

∂ξ
(ξ) =

∂ψ

∂x
|x=xKm (ξ)

∂xKm,1
∂ξ

(ξ) +
∂ψ

∂y
|x=xKm (ξ)

∂xKm,2
∂ξ

(ξ)

∂ψ̃(m)

∂η
(ξ) =

∂ψ

∂x
|x=xKm (ξ)

∂xKm,1
∂η

(ξ) +
∂ψ

∂y
|x=xKm (ξ)

∂xKm,2
∂η

(ξ) .

This result can be written in matrix form so that the Jacobian matrix (defined
in Definition B.3) can be recognized:

∂ψ̃(m)

∂ξ
∂ψ̃(m)

∂η

 =


∂xKm,1
∂ξ

∂xKm,2
∂ξ

∂xKm,1
∂η

∂xKm,2
∂η


 ∂ψ

∂x
∂ψ

∂y

 =

(
DxKm
Dξ

)T  ∂ψ

∂x
∂ψ

∂y

.
(2.24)

(DxKm/Dξ) is the Jacobian matrix of the reference map xKm and is the cor-
respondent of the Jacobian found in the one-dimensional case. So, Equation
(2.24) can be written in more compact form using the gradient

∇ψ̃(m) (ξ) =

(
DxKm
Dξ

)T
∇ψ (x) .

If the Jacobian is nonsingular, ∇ψ can be found using

∇ψ (x) =

(
DxKm
Dξ

)−T
∇ψ̃(m) (ξ)

where (
DxKm
Dξ

)−T
=

((
DxKm
Dξ

)−1
)T

=

((
DxKm
Dξ

)T)−1

.

Transformation of integrals to the reference domain Using the substi-
tution theorem it is possible to change the integration domain using the results
above and the fact that xKm

(
K̃
)

= Km where K̃ is either Kt or Kq. The left
member of Equation (2.23) can be transformed to

Nh,p∑
i=1

ῡi

Mh,p∑
m=1

¨
xKm(K̃)

(a1∇vi · ∇vj + a0vivj) dz =

Nh,p∑
i=1

ῡi

Mh,p∑
m=1

¨
K̃

JxKm

(
ã

(m)
1

(
DxKm
Dξ

)−T
∇ṽ(m)

i

)((
DxKm
Dξ

)−T
∇ṽ(m)

j

)
dξ
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+

Nh,p∑
i=1

ῡi

Mh,p∑
m=1

¨
K̃

JxKm ã
(m)
0 ṽ

(m)
i ṽ

(m)
j dξ.

where |DxKm/Dξ| = JxKm .

2.4.5 Higher-order elements
2.4.5.1 Lagrange-Gauss-Lobatto Kp,rq -elements

Kp,rq -elements are the generalization of K1
q-elements using Lagrange shape func-

tions. Two- and three-dimensional Lagrange shape functions can be obtained
using the product of one-dimensional Lagrange functions. The choice of the
points can be taken accordingly to be the product of Gauss-Lobatto points in
K̄a being Kq = Ka × Ka. In the case of the quadrilateral reference domain,
each axis direction has a different order of approximation, that’s why these el-
ements are indicated with Kp,rq . The points can be divided into three groups:
vertex nodes, edge nodes and bubble nodes. Vertex nodes corresponds to the four
vertices of the quadrilateral:

ξξ1 = ξ1 =
[
x

(p)
1 , x

(r)
1

]T
= [−1,−1]

T
, ξξ2 = ξ2 =

[
x

(p)
p+1, x

(r)
1

]T
= [1,−1]

T
,

ξξ3 = ξ3 =
[
x

(p)
1 , x

(r)
r+1

]T
= [−1, 1]

T
, ξξ4 = ξ4 =

[
x

(p)
p+1, x

(r)
r+1

]T
= [1, 1]

T
,

where the x(p)
i ’s are the Gauss-Lobatto points of order p and the x(r)

i ’s are the
Gauss-Lobatto points of order r, so x(p)

i ∈ K̄a and x(r)
i ∈ K̄a. There are r − 1

edge nodes which lie on the edges of the quadrilateral

e1 = {ξ1 + t (ξ3 − ξ1) |t ∈ [0, 1]} ,

e2 = {ξ2 + t (ξ4 − ξ2) |t ∈ [0, 1]} ,

e3 = {ξ1 + t (ξ2 − ξ1) |t ∈ [0, 1]} ,

e4 = {ξ3 + t (ξ4 − ξ3) |t ∈ [0, 1]} ,

and can be defined as

ξe11 =
[
x

(p)
1 , x

(r)
2

]T
=
[
−1, x

(r)
2

]T
,

ξe12 =
[
x

(p)
1 , x

(r)
3

]T
=
[
−1, x

(r)
3

]T
,

...

ξe1r−1 =
[
x

(p)
1 , x(r)

r

]T
=
[
−1, x(r)

r

]T
,

and correspondingly for the other nodes. The bubble nodes instead, are defined
as

ξbi,j =
[
x

(p)
i+1, x

(r)
j+1

]T
, i = 1, 2, . . . , p− 1, j = 1, 2, . . . , r − 1.

Our task is to determine a nodal basis of the space

Qp,r (Kq) =
{
ξkηl : 1 ≤ k ≤ p, 1 ≤ l ≤ r,−1 ≤ ξ, η ≤ 1

}
.
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In the same way it was done above for the points, we can divide the shape
functions in three groups: the vertex functions, the edge functions and the
bubble functions. Each of them is built using the one-dimensional Lagrange
functions l(p)Lag,i, i = 1, 2, . . . , p + 1 and l

(r)
Lag,j , j = 1, 2, . . . , r + 1 where p and

r are the orders. Each of them are forced to satisfy, as already done in the
one-dimensional case, the delta property

l
(p)
Lag,k

(
x

(p)
l

)
= δkl.

The four vertex functions are

v
ξ1

Kq
(ξ) = l

(p)
Lag,1 (ξ) · l(r)Lag,1 (η) , v

ξ2

Kq
(ξ) = l

(p)
Lag,p+1 (ξ) · l(r)Lag,1 (η) ,

v
ξ3

Kq
(ξ) = l

(p)
Lag,1 (ξ) · l(r)Lag,r+1 (η) , v

ξ4

Kq
(ξ) = l

(p)
Lag,p+1 (ξ) · l(r)Lag,r+1 (η) . (2.25)

The edge functions are

ve1Kq,1 (ξ) = l
(p)
Lag,1 (ξ) · l(r)Lag,2 (η) (2.26)

ve1Kq,2 (ξ) = l
(p)
Lag,1 (ξ) · l(r)Lag,3 (η) (2.27)

... (2.28)

ve1Kq.r−1 (ξ) = l
(p)
Lag,1 (ξ) · l(r)Lag,r (η) . (2.29)

The bubble functions are

vbKq,i,j (ξ) = l
(p)
Lag,i+1 (ξ) · l(r)Lag,j+1 (η) , i = 1, 2, . . . , p− 1, j = 1, 2, . . . , r − 1.

(2.30)

Proposition 2.37. The Lagrange shape functions (2.30), (2.29) and (2.25)
form a basis of the space Qp,r (Kq).

Proposition 2.38. The Lagrange shape functions (2.30), (2.29) and (2.25)
satisfy the delta property and are therefore a nodal basis of the space Qp,r (Kq).

2.4.5.2 Lagrange-Fekete P p-elements

Again, we would like to generalize the K1
t -elements with pth-order elements using

Lagrange shape functions. We can do this following the same procedure used in
the previous sub-subsection. First of all we have to define suitable and efficient
points for the triangular domain. A good choice in this sense are the Fekete
points. In its original version, the problem consists in determining the position
of N points on a compact subset K ⊂ R2 that maximize the product of their
mutual Euclidean distances. The NP -tuples

(
ξ1, ξ2, . . . , ξNP

)
that satisfies this

property are called N th
P order Fekete points in K. An alternative definition is

Definition 2.39. Let a bounded convex domain K ⊂ Rd be equipped with
a polynomial space P (K) of dimension NP . Given an arbitrary basis {ϑi}NPi=1

of P (K), the Fekete points {ξi}
NP
i=1 ⊂ K are a point set that maximizes the

determinant∣∣L (y1,y2, . . . ,yNP
)∣∣ = max

{ξ1,ξ2,...,ξNP }⊂K
∣∣L (ξ1, ξ2, . . . , ξNP

)∣∣ ,
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where L is the generalized Vandermonde matrix for the Lagrange degrees of
freedom Li (g) = g (ξi),

L
(
ξ1, ξ2, . . . , ξNP

)
= {Li (ϑj)}NPi,j=1 = {ϑj (ξi)}

NP
i,j=1 .

The advantage of the Fekete points is that they can be defined on any subset
of Rd. Unfortunately, no direct formula for computing them is available, so a
numerical approximation is needed. An algorithm for the estimation of Fekete
points has been recently given in [5].

Again, it is possible to divide the Fekete points in a way such that it is
possible to simply define hybrid meshes of quadrilaterals and triangles. We use
the already defined domain Kt with the edges

e1 = {ξ1 + t (ξ2 − ξ1) |t ∈ [0, 1]} ,

e2 = {ξ2 + t (ξ3 − ξ2) |t ∈ [0, 1]} ,
e3 = {ξ3 + t (ξ1 − ξ3) |t ∈ [0, 1]} .

For the construction we’re going to report, the following theorem is fundamental:

Theorem 2.40. Let p ≥ 1. The Fekete points have to following properties:

1. the Fekete points {yi}
NP
i=1 are invariant under the choice of the basis {ϑi}NPi=1;

2. in one-dimensional intervals and Cartesian product geometries the Fekete
and Gauss-Lobatto points are the same sets;

3. on the edges of triangular domains the Fekete points coincide with the
one-dimensional Gauss-Lobatto points.

Using the pth-order Gauss-Lobatto points x(p)
i ∈ K̄a and Theorem 2.40, the

three vertex nodes can be defined by

ξξ1 = ξ1 =
[
x

(p)
1 , x

(p)
1

]T
= [−1,−1]

T
,

ξξ2 = ξ2 =
[
x

(p)
p+1, x

(p)
1

]T
= [1,−1]

T
,

ξξ3 = ξ3 =
[
x

(p)
1 , x

(p)
p+1

]T
= [−1, 1]

T
.

The edge nodes can be defined following the orientation of the edges ei

ξe11 =
[
x

(p)
2 , x

(p)
1

]T
=
[
x

(p)
2 ,−1

]T
,

ξe12 =
[
x

(p)
3 , x

(p)
1

]T
=
[
x

(p)
3 ,−1

]T
,

...

ξe1p =
[
x(p)
p , x

(p)
1

]T
=
[
x(p)
p ,−1

]T
.

The bubble nodes can be sorted in any unique way and are denoted ξbi , i =
1, 1, . . . , (p−1)(p−2)/2− 1.

The unique Lagrange nodal basis is obtained as stated before, inverting the
generalized Vandermonde matrix defined in Definition 2.39.
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2.4.5.3 Basis of the space Vh,p

Like it was done before, we have to build a basis for the space Vh,p: this is a sim-
ple task now that we’ve defined the shape functions on the reference domain. We
just have to use the reference map to move the shape functions to the correct do-
main. So, let’s assume we defined an hybrid meshMh,p =

{
K1,K2, . . . ,KMh,p

}
,

where Km,m = 1, 2, . . . ,Mh,p is either a triangular or a quadrilateral element.
What’s important to say here is that it is convenient to assume we use only
Kpt - or Kpq -elements, as the approximation could not be continuous in case the
orders were different. Let Mt and Mq denote the number of Kpt -elements and of
Kpq -elements respectively.

We continue to separate the definitions of the shape functions in vertex basis
functions, edge basis functions and bubble basis functions. Each of them are
defined by employing the reference maps already defined in Subsubsections 2.4.1
and 2.4.2 for K1

q- and K1
t -elements and the basis functions of the spaces Qp (Kq)

and P p (Kt) defined in Subsubsections 2.4.5.1 and 2.4.5.2.

Vertex basis functions Vertex basis functions can be defined the same way
we did before in Sub-subsection 2.4.4.1. Using the definition of vertex patch of
Equation (2.21) we get the basis functions of Equation (2.22)

vxiKm (x) =


(
v
ξr
Kq
◦ x−1

Km

)
(x) , x ∈ Km and Km is a quadrilateral(

v
ξr
Kt
◦ x−1

Km

)
(x) , x ∈ Km and Km is a triangle

0, x ∈ Ωh \ S (i)

.

In the contest of Sub-subsection 2.4.4.1 those were the only basis functions, but
in the current one, those are only the vertex basis functions. This is simply due
to the fact that we’re dealing with higher-order elements, in which we defined
more points on which other basis functions are to be defined.

Edge basis functions The edge basis functions were not defined in the case
of first-order elements. A procedure similar to that used for the vertex basis
functions can be used. Assume sj is an edge for which xKm (el) = sj . We define
the edge element patch, which is the correspondent of the vertex patch, with the
equation

Se (j) =
⋃

k∈Ne(j)

Kk, Ne (j) = {k : Kk ∈Mh,p, sj is an edge of Kk} .

According to our definitions of Kpq -elements and Kpq -elements, each edge sj con-
tains exactly p− 1 nodal points xsjm ,m = 1, 2, . . . , p− 1 for which x−1

Kk

(
x
sj
m

)
=

ξ
x−1
Kk

(sj)
m . With these elements in hand, we can define the basis edge functions

v
sj
Kk,m

=


(
velKq,r ◦ x

−1
Kk

)
(x) , x ∈ Kk and Kk ∈ Se (j) is a quadrilateral(

velKt,r ◦ x
−1
Kk

)
(x) , x ∈ Kk and Kk ∈ Se (j) is a triangle

0, x ∈ Ωh \ Se (j)

,

where velKq,r (ξ) and velKt,r (ξ) are edge nodal shape functions defined on the
reference domain such that

velKq,r
(
x−1
Kk

(xsjm)
)

= 1, velKt,r
(
x−1
Kk

(xsjm)
)

= 1.
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Bubble basis functions The bubble functions are simpler to be defined.
Each Kpq -element contains (p− 1)

2 bubble nodes and each P p-element contains
(p−1)(p−2)/2. By using the reference map xKk : K̃ → Kk it is possible to define

xbi = xKk

(
ξbi

)
to be the bubble nodes in the domain Kk using an index only, obtained by the
mapping of the bubble points in the reference domain K̃. The bubble functions
can be defined as

vbKk,m (x) =


(
vbKq,r ◦ x

−1
Kk

)
(x) , if x ∈ Kk and Kk is a quadrilateral(

vbKt,r ◦ x
−1
Kk

)
(x) , if x ∈ Kk and Kk is a triangle

0, if x ∈ Ωh \Kk

.

2.5 Three-dimensional problems
There are also elements to be defined for three-dimensional analysis. The sim-
plest element is the brick, but there are also other elements that can be used in
many cases when the brick is not adequate.

2.5.1 K1
B-elements

Let’s call K1
B-element the element used to create meshes on three-dimensional

domains (brick element). It’s definition is:

Definition 2.41. A K1
B-element is a nodal finite element defined by the triple(

K,B1 (K) ,L
)
where:

• K is an hexahedral domain;

• B1 (K) is the space of the polynomials of first degree defined on the domain
K;

• L is the set of degrees of freedom.

The definition of the K1
B-element on the reference domain is:

Definition 2.42. A K1
B-element on the reference domain is the K1

B-element
K1,r
B defined by the triple

(
KB , B

1 (KB) ,LB
)
where:

• KB is the domain (−1, 1)
3;

• B1 (KB) = span ({1, ξ, η, ζ, ξη, ηζ, ξζ, ξηζ});

• LB = {Li}8i=1 where g ∈ B1 (Kr) and Li : B1 (KB)→ R are

Li (g) = g (ξi) , i = 1, 2, . . . , 8,

ξ1 =

 −1
−1
−1

 , ξ2 =

 1
−1
−1

 , ξ3 =

 1
1
−1

 , ξ4 =

 −1
1
−1

 ,
ξ5 =

 −1
−1
1

 , ξ6 =

 1
−1
1

 , ξ7 =

 1
1
1

 , ξ8 =

 −1
1
1

 .
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As usual we have to design the nodal basis for the element. We accomplish
this task in the proof of Lemma 2.28.

The nodal finite element
(
KB , B

1 (KB) ,LB
)
is unisolvent, and the nodal

basis of the space B1 (KB) consists of the vertex functions

v
ξ1

KB
(ξ) =

(1− ξ) (1− η) (1− ζ)

8
, v

ξ2

KB
(ξ) =

(1 + ξ) (1− η) (1− ζ)

8
,

v
ξ3

KB
(ξ) =

(1 + ξ) (1 + η) (1− ζ)

8
, v

ξ4

KB
(ξ) =

(1− ξ) (1 + η) (1− ζ)

8
,

v
ξ5

KB
(ξ) =

(1− ξ) (1− η) (1 + ζ)

8
, v

ξ6

KB
(ξ) =

(1 + ξ) (1− η) (1 + ζ)

8
,

v
ξ7

KB
(ξ) =

(1 + ξ) (1 + η) (1 + ζ)

8
, v

ξ8

KB
(ξ) =

(1− ξ) (1 + η) (1 + ζ)

8
.

Proof. We have to build the generalized Vandermonde matrix using the basis
of the space B1 (KB) already defined in Definition 2.42

L =



1 −1 −1 −1 1 1 1 −1
1 1 −1 −1 −1 1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 −1 1 −1
1 1 1 1 1 1 1 1
1 −1 1 1 −1 1 −1 −1


.

This matrix is invertible and the inverse is

L−1 =
1

8



1 1 1 1 1 1 1 1
−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
−1 1 −1 1 1 −1 1 −1


.

This means the element is unisolvent and we can define the nodal basis of this
element by looking at the columns of L−1.

Now that we know the definitions of the shape functions defined on the
reference domain, it is possible to build the reference map, which is needed to
transfer the shape functions on the reference domain to the various elements
and to build this way a basis of the space Vh,p. In the three-dimensional case
we want to define a change of coordinates of the type

ξ =

 ξ
η
ζ

 xKm�
x−1
Km

x =

 x
y
z

 .
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As already done, the isoparametric concept can be invoked, so that the starting
point is the definition of the reference map through the use of the shape functions
defined on the reference domain:

xKm (ξ) =

8∑
i=1

v
ξi
KB
x

(m)
i . (2.31)

Proposition 2.43. The reference map of Equation (2.31) satisfies

xKm (ξi) = x
(m)
i , i = 1, 2, . . . , 8

and
xKm (ei) = si, i = 1, 2, . . . , 8

where ei is the edge of the element in the reference domain and si is the edge of
the element.

Proposition 2.44. The nodal finite element
(
KB , B

1 (KB) ,LB
)
is unisolvent,

and the shape functions

vxiKm (x) =
(
v
ξi
Km
◦ x−1

Km

)
(x) , i = 1, 2, . . . , 8

constitute a unique basis of the space B1 (KB).

The same that has been demonstrated before with Kq and Kt can be demon-
strated for the three-dimensional KB element. The shape functions show con-
tinuity across boundaries: this could be seen considering the behavior of the
shape function vξ1

KB
on the face ζ = −1

v
ξ1

KB
(ξ, η,−1) =

(1− ξ) (1− η) 2

8
=

(1− ξ) (1− η)

4
.

This is an hyperbolic paraboloid and is determined uniquely by the four nodes of
the face, hence, the same shape is guaranteed for any other element of this type
sharing the same surface. Continuity of the shape function is therefore assured.
If the distortion of the element is not too high, the shape functions will be
smooth. The completeness of the shape functions is guaranteed by the fact that
this element is isoparametric. Therefore, this element assures the convergence
of the Galerkin method.

2.6 Higher-order reference maps

We defined isoparametric elements as objects for which a reference map was
built using its shape functions. In the subsequent sections anyway, higher-
order elements have been introduced, which had new types of shape functions
associated with their definition (edge functions and bubble functions). These
shape functions can be used to extend the previous definition to use all these
new shape functions and not only vertex functions. For quadrilateral elements,
for instance:
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Definition 2.45. Let Km be a quadrilateral element belonging to the mesh
Mh,p, whose reference element is K1,r

q , local directional orders of approximation
pb,1, pb,2 in the element interior and local polynomial orders pe1 , pe2 , . . ., pe4 on
the edges. Let xKm : K1,r

q → Km be of the form

xKm (ξ) =

4∑
i=1

α
ξi
Km

v
ξi
K̃q

(ξ) +

+

4∑
i=1

pei−1∑
j=1

αeiKm,jv
ei
K̃q,j

(ξ) +

+

pb,1−1∑
n1=1

pb,2−1∑
n2=1

αbKm,n1,n2
vb
K̃q,n1,n2

(ξ) ,

where the functions were already defined and are the nodal vertex functions,
the nodal edge functions and the nodal bubble functions. If the element inter-
polation function uh,p can be written using the same functions combined with
the DOFs, the element is said to be isoparametric. Similar definitions can be
given for any other reference element.

2.7 Higher-order numerical quadrature

The numerical evaluation of integrals is fundamental in FEM as both the stiff-
ness matrix and the force vector are determined in general by computing inte-
grals. In some simple cases, these integrals can be evaluated exactly, but this
cannot be done in general. The problem of obtaining a precise value is nontrivial
and important as, besides obvious effects on the preciseness of the results of the
procedure, it could even affect the solvability of the system resulting from the
Galerkin method, as the matrix may even become singular.

2.7.1 Quadrature on the reference domain Ka

The general idea of numerical quadrature is to transform someway the integral
in a sum. Let g (y) be a function to be integrated over [a, b] with a < b

ˆ b

a

g (y) dy ≈
k∑
i=0

Ak,ig (yk,i), (2.32)

where k is the order of the quadrature, the Ai,k’s are the quadrature coefficients
and the yi,k’s are the quadrature nodes. However, all our integrals are evaluated
over a specific domain, which is the reference domain. We did this by using an
affine reference map (see Subsection 2.2.1). The integral of Equation (2.32) can
be transformed to the reference domain Ka as we’ve already done

ˆ 1

−1

f (ξ) dξ ≈
k∑
i=0

wk,if (ξk,i).

We followed the Substitution theorem so f (ξ) = g (xKm (ξ)) and wk,i = Ak,i/|JxKm |.
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A possible way of choosing quadrature nodes and coefficients is that of the
Gauss quadrature. The k-point Gauss quadrature reads

ˆ 1

−1

f (ξ) dξ ≈
k∑
i=1

wk,if (ξk,i) .

This means we have to determine 2k parameters: k weights and k nodes. This
can be done by solving a system of 2k equations which has to be solved for the
weights and the nodes: we can use 2k functions whose integral is known, like
the polynomials 1, ξ, ξ2, . . . , ξ2k−1, to create the nonlinear system of equations

ˆ 1

−1

1dξ =

k∑
i=1

wk,i,

ˆ 1

−1

ξdξ =

k∑
i=1

wk,iξk,i,

...ˆ 1

−1

ξ2k−1dξ =

k∑
i=1

wk,iξ
2k−1
k,i .

Once this system has been solved, both the ξk,i’s and the wk,i’s have been
computed. As, according to the construction, this method can integrate all the
polynomials 1, ξ, ξ2, . . . , ξ2k−1, which forms a basis of the space P 2k−1 ((−1, 1)),
it is simple to see that it can integrate exactly all the polynomials in that space.

Proposition 2.46. Using the k-point Gaussian quadrature rule it is possible to
exactly integrate any polynomial of degree d ≤ 2k − 1.

Proof. Suppose we want to integrate over (−1, 1) the polynomial p (ξ) =
∑d
j=0 ajξ

j .
So, we want to compute

ˆ 1

−1

d∑
j=0

ajξ
jdξ.

This can be rewritten using the linearity of the integral

a0

ˆ 1

−1

ξ0dξ + a1

ˆ 1

−1

ξ1dξ + . . .+ ad

ˆ 1

−1

ξddξ,

and transformed by substitution to

a0

k∑
i=1

wk,i + a1

k∑
i=1

wk,iξk,i + . . .+ ad

k∑
i=1

wk,iξ
d
k,i.
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With simple algebraic manipulations

ˆ 1

−1

d∑
j=0

ajξ
jdξ = a0

k∑
i=1

wk,i + a1

k∑
i=1

wk,iξk,i + . . .+ ad

k∑
i=1

wk,iξ
d
k,i

=

k∑
i=1

wk,ia0 +

k∑
i=1

wk,ia1ξk,i + . . .+

k∑
i=1

wk,iadξ
d
k,i

=

k∑
i=1

wk,j
(
a0 + a1ξk,i + . . .+ adξ

d
k,i

)
=

k∑
i=1

wk,j

d∑
j=0

ajξ
j
k,i

=

k∑
i=1

wk,jp (ξ) ,

we prove the exactness of the computation on the domain Ka = (−1, 1). Using
one of the designed reference maps and the Substitution theorem it is possible
to extend the same to any domain.

It is moreover possible to prove that the integration points are the roots of
the Legendre polynomials Lk (ξ), which can be calculated with Equation (2.15)
and that the weights can be calculated with

wk,i =
2(

1− ξ2
k,i

)
L′k (ξ)

2
.

This is an interesting result as the roots of the Legendre polynomials are quite
well tabulated.

2.7.2 Quadrature on the reference domain Kq

The Cartesian product can be used to obtain an integration formula for two-
dimensional domains like Kq = Ka×Ka. If we integrate on Ka with the formula

ˆ
Ka

f (ξ) dξ ≈
na∑
i=1

wna,if (ξna,i) ,

we can extend this to integrate exactly all the bivariate polynomials of degree
d1 ≤ 2n

(1)
a − 1 on the ξ axis and d1 ≤ 2n

(2)
a − 1 on the η direction:

¨
K2
a

g (ξ, η) dξdη ≈
ˆ 1

−1

n(1)
a∑
i=1

g
(
ξ
n

(1)
a ,i

, η
)
w
n

(1)
a ,i

dη

≈
n(2)
a∑
j=1

n(1)
a∑
i=1

w
n

(1)
a ,i

w
n

(2)
a ,j

g
(
ξ
n

(1)
a ,i

, η
n

(2)
a ,j

)
.
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Example 2.47. Consider the integral which arises when computing an element
of the stiffness matrix of a two-dimensional problem. A possible form of this
integral could be

´ 1

−1

´ 1

−1
ξ2η2dξdη. Exact integration on this yields

ˆ 1

−1

ˆ 1

−1

ξ2η2dξdη =

ˆ 1

−1

2

3
η2dη =

2

3
· 2

3
=

4

9
.

Using, instead, a two-point Gauss quadrature

ˆ 1

−1

ˆ 1

−1

ξ2η2dξdη =

ˆ 1

−1

(
1 ·
(

1√
3

)2

+ 1 ·
(

1√
3

)2
)
η2dη

=
2

3
·

(
1 ·
(

1√
3

)2

+ 1 ·
(

1√
3

)2
)

=
4

9
.

2.7.3 Quadrature on the reference domain Kt

The integration on the triangular domain Kt needs a translation to the domain
Kq in order to perform the integration using the Gaussian quadrature. The
following proposition illustrates how to perform the integration of a function
defined on Kt.

Proposition 2.48. Let Kt be defined on the ξ = [ξ1, ξ2]-plane and Kq be defined
on the η = [η1, η2]-plane. Let g (ξ) be a function defined on the reference domain
Kt. Then it is possible to transform the integral over Kt to the integral over
Kq:

¨
Kt

g (ξ) dξ =

¨
Kq

1− η2

2
g

(
−1 +

1− η2

2
(η1 + 1) , η2

)
dη.

Proof. The proposition can be proved using the mapping

ξ (η) : η → ξ =

[
−1 +

(1− η2) (η1 + 1)

2
η2

]

and the Substitution theorem.

Once the transformation has been accomplished, it is possible to use what
already explained in Subsection 2.7.2.
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2.7.4 Quadrature on the reference domain KB

Once again, the same extension used in Subsection 2.7.2 can be used to integrate
over the brick KB . So

˚
K3
a

g (ξ, η, ζ) dξdηdζ ≈
¨
K2
a

n(1)
a∑
i=1

g
(
ξ
n

(1)
a ,i

, η, ζ
)
w
n

(1)
a ,i

dηdζ

≈
ˆ
Ka

n(1)
a∑
i=1

n(2)
a∑
j=1

g
(
ξ
n

(1)
a ,i

, η
n

(2)
a ,j

, ζ
)
w
n

(1)
a ,i

w
n

(2)
a ,j

dζ

≈
n(1)
a∑
i=1

n(2)
a∑
j=1

n(3)
a∑
l=1

g
(
ξ
n

(1)
a ,i

, η
n

(2)
a ,j

, ζ
n

(3)
a ,l

)
w
n

(1)
a ,i

w
n

(2)
a ,j

w
n

(3)
a ,l

.

Here again, it is possible to integrate exactly every polynomial of three inde-
pendent variables up to degrees 2n

(1)
a − 1, 2n

(2)
a − 1 and 2n

(3)
a − 1 in the three

variables by choosing n(1)
a , n(2)

a and n
(3)
a as orders of integration in the three

directions.

2.7.5 Choice of the order of numerical integration

When performing numerical integration in finite element analysis, two funda-
mental problems arise: how many integration points and what kind of numerical
integration should we choose? The Gauss numerical integration presented so far
has proved to be very efficient, requiring, considering the same precision, less
function evaluations than other methods. However, there are cases where other
numerical methods of integration could be useful.

Having chosen the Gauss integration method, it has already been explained
how to determine both the integration points and weights, but the problem of
choosing the order of the integration has been left open. The choice of the order
is clearly a trade-off: a high order integration gives a more accurate result, but
implies an increase of the cost of the integration. On the other hand, a lower
order of numerical integration could lead to a faster integration, but with the
penalty of a reduced accuracy. This reduced accuracy could even turn out to
be very damaging, as it could lead to a higher number of zeros in the stiffness
matrix, making it a singular matrix. A practical way to evaluate the order of
numerical integration can be illustrated in the following example.

Example 2.49. Consider the case in which we have to integrate a function F to
calculate a the (i, j)

th element of a stiffness matrix ki,j =
´
Km

F dx. Assuming
F = f

(
x2, xy, y2

)
is a polynomial and Km is a quadrilateral, according to the

model presented so far, we can transform our integral to the reference domain
Kq, getting ki,j =

´
Kq

det (JKm)F (xKm (ξ)) dξ. In this case, the determinant
of the Jacobian matrix is constant, and therefore it doesn’t increase the degree
of the integrand. This implies that a two-points Gauss rule is sufficient in each
direction to integrate exactly.

As a general rule, given a function F of degree p in each direction, p+1/2
or p+2/2 evaluations of the integrand F are sufficient to exactly integrate the
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function (assuming the determinant of the Jacobian matrix is constant) when p
is odd or even respectively.

It should be noted that the Jacobian matrix is not always constant, for
instance it is not when the elements are not rectangles or parallelograms. In
that case higher orders of numerical integrations are needed.

2.8 Generalization of the Finite Element concepts
In engineering, many possible problems arise when treating PDEs, and the
situations reported so far are only the most common. A more general framework
can be proposed: we seek an unknown function u (z) that satisfies a system of
PDEs, which can be wrote with

A (u) = [A1 (u) , A2 (u) , . . .]
T

= 0,

with the boundary conditions

B (u) = [B1 (u) , B2 (u) , . . .]
T

= 0.

The sought approximated function is

u ≈ uh =

n∑
i=1

N iai = Na.

FEM works on the weak form however, so what we have to find is the integral
form ˙

Ω

Gj (uh) dz +

˛
∂Ω

gj (uh) dz = 0, ∀j = 1, . . . , n,

where GJ and gj are functions with the usual structure. It is then possible to
write the integrals as a summation over the elements

˙
Ω

Gj (uh) dz +

˛
∂Ω

gj (uh) dz =

Mh∑
m=1

(˙
Km

Gj (uh) dz +

˛
∂Ωm

gj (uh) dz

)
.

Two approaches are available: the method of weighted residuals and the method
of the variational functionals for which stationery is sought. A good reference
for both is [34].

2.8.1 Method of weighted residuals
The method of the weighted residuals is a procedure similar to that explained in
1.4.1, where the weighting functions ϕi ∈ V . To obtain an approximate solution
we have to chose an approximation of this space Vh ⊂ V and of the space of the
trial solutions Uh ⊂ U . The choice of the space Vh leads to different methods
with different error properties. When Vh = Uh, the method is called Galerkin
method; when ϕi = δi, where δi (x) = 0 for x 6= xi, the method is called point
collocation and when ϕi = I in ΩKj and zero elsewhere, the method is named
subdomain collocation.
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2.9 Error estimates and convergence rate
An interesting subject to talk about is the error committed when approximating
u with un. We define the error of the approximation un as en = u − un. The
first important thing to note is what’s stated in the following lemma.

Lemma 2.50. Let u ∈ V be the exact solution of the continuous problem (2.1)
and let un ∈ Vn be the solution of the discrete problem (2.3). Then, the error
en satisfies the equation

a (u− un, v) = 0, ∀v ∈ Vn.

If the bilinear form is symmetric, the energetic inner product can be intro-
duced as 〈u, v〉e = a (u, v). According to Lemma 2.50 then we get

〈en, v〉e = 0, ∀v ∈ Vn.

This equation means that the error of the approximation we achieved en is
orthogonal3 to every functions of the Galerkin subspace Vn (we say en is or-
thogonal to the subspace Vn). It can be seen as well that un is the orthogonal
projection4 of the exact solution u ∈ V to the Galerkin subspace Vn. As a con-
sequence, un is actually the nearest element in Vn to the exact solution u ∈ V
in the energy norm (see A.20). This can be translated to

‖u− un‖e = inf
v∈Vn

‖u− v‖e .

With these elements in hand, it is possible to formulate the Céa’s lemma,
which is interesting to prove:

Lemma 2.51. Let V be an Hilbert space, a (·, ·) : V ×V → R a bilinear bounded
V-elliptic form, l ∈ V ′, u ∈ V be the solution to problem (2.1), Vn a subspace
of V and un ∈ Vn the solution of the discrete problem (2.3) (Galerkin problem).
Let Ca and C̃a be the continuity and V-ellipticity constants of the bilinear form
a (·, ·) (see A.19). Then it is true that

‖u− un‖V ≤
Ca

C̃a
inf
v∈Vn

‖u− v‖V .

Proof. We start the proof by considering that the bilinear form a (u− un, u− un)
can be written as the sum of a (u− un, u− v) and a (u− un, v − un), since we
can exploit the linearity on the second argument getting

a (u− un, u− v) + a (u− un, v − un) = a (u− un, u− v + v − un)

= a (u− un, u− un) .

We can state that v − un ∈ Vn, as both v and un are in Vn (Vn is a linear
space and v− un is a linear combination which must therefore be in Vn). Thus,
a (u− un, v − un) = 0 as a consequence of Lemma 2.50, and we get

a (u− un, u− v) = a (u− un, u− un) .

3Two functions f and g are said to be orthogonal if the inner product 〈f, g〉 = 0 whenever
f 6= g.

4If P is an orthogonal projection, it projects v ∈ V onto Pv orthogonally then
〈v − Pv, u〉e = 0, ∀u ∈ imgP .

University of Padua Faculty of Engineering



66 CHAPTER 2. FINITE ELEMENT METHOD

By the V-ellipticity property we have that

a (u− un, u− un) = C̃a ‖u− un‖2V ,

and by the boundedness of the bilinear form we have that

a (u− un, u− un) ≤ Ca ‖u− un‖V ‖u− v‖V , ∀v ∈ Vn.

Putting the last two equations together we get

‖u− un‖V ≤
Ca

C̃a
‖u− v‖V , ∀v ∈ Vn.

The importance of the Céa’s lemma lies in the fact that it shows the error en
is independent on the basis chosen. The only thing that matters is the Galerkin
subspace chosen. Anyway, one has to be careful when choosing a basis of the
subspace as, even if not affecting the error, it affects the performance of the
algorithm by conditioning the stiffness matrix.

From what has been said, it is clear that as long as the mesh elements become
smaller and smaller, the approximated solution gets nearer and nearer to the
exact. In fact, as n→ +∞, h (n)→ 0, which indicates the size of the elements
decreases. In the limit, where h = 0, the exact solution is determined. However,
it is possible to obtain the exact solution after a finite number of subdivisions
of the mesh. If the polynomials used in the elements can exactly fit the exact
solution, it is possible to get un = u after a finite number of subdivision of the
mesh, i.e. when h 6= 0. Thus, for instance, if the exact solution is of the form
of a quadratic polynomial and the shape functions include all the polynomials
of that order, the approximation will yield the exact result. Following this fact,
we can use the Taylor theorem (see Section B.4) to express the exact solution
as a polynomial in the vicinity of a point x0

u (x) = u (x0) +

(
∂u

∂x
(x0)

)
(x− x0) +

(
∂u

∂x
(x0)

)
(y − y0) + . . .

This way, with an element of size h and degree p, a polynomial expansion of
degree p can be locally fitted exactly. Since x−x0 is of the order of magnitude
of h, the error will be of the order O

(
hp+1

)
.

2.10 Adaptive finite element refinement

In Section 2.9 we developed some estimates of the error committed in the ap-
proximation of the exact solution. What we need to discuss, is how to reduce
this error and how to know the way to reduce it under a specified threshold.
We call the process of looking for a solution of lower error refinement . When
the refinement we’re trying to perform is based on the results of previous com-
putations, this refinement is called adaptive.

As stated in the section 2.1, the Galerkin method converges when considering
subspaces for which (2.2) holds. Hence, assuming we have a space Vn associated
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Figure 2.3: h-refinement of a two-dimensional mesh.

with a mesh Mn, reducing the size of the elements we get a new mesh Mn+1

(see Figures 2.3 and 2.4) on which the space Vn+1 satisfies

Vn ⊂ Vn+1 ⊂ V.

Iterating refinements and calculating approximated solutions on spaces of higher
dimension, it is possible to get nearer and nearer to the exact solution (see
Figure 2.4). This type of refinement is named h-refinement. Unfortunately, as
the number of nodes increases, the computational load needed to compute the
approximated solution grows exponentially. It is therefore necessary to refine
the mesh cleverly.

Reducing the size of the elements is not the only way to accelerate the
convergence: it is possible as well to increase the order of the polynomial used
in their definition (p-refinement).

It is moreover possible to divide the previous categories in subclasses: three
typical categories of h-refinement are present and two p-refinement strategies
are recognizable. The categories of h-refinement are presented below.

1. The first category of h-refinement is the element subdivision (enrichment).
The refinement in this case is simply implemented subdividing the ele-
ments showing too high errors in smaller elements. This method is not
very efficient as, during the mesh refinement, some new useless nodes can
be created, and the calculation needed to avoid it becomes more involved.

2. Another h-refinement class requires a completemesh regeneration or remesh-
ing . In this case, the mesh is completely regenerated, starting from the
definition of the domain. This refinement clearly is expensive, particularly
in three-dimensional environments where the mesh requires considerable
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Figure 2.4: h-refinement of a one-dimensional mesh. It can be seen how the
refinement of the mesh produces a more precise result (black curve).

computational load. Anyway, this kind of refinement is considered to be
superior.

3. Another kind of refinement is the r-refinement : this implies only a repo-
sitioning of the nodes already existing.

For what concerns p-refinement, we can recognize two different approaches:

1. uniform increase of the polynomial order on every elements;

2. local increase of the polynomial order typically using hierarchical refine-
ment.

It is furthermore possible to combine the positive aspects of both the refine-
ment types, getting what’s called hp-refinement . In this kind of procedure,
both the degree of the element and its size are refined in order to produce an
approximation nearer to the exact solution.

2.10.1 Prediction of the element size
In practical applications, we commonly try to find an approximation whose
relative energy norm percentage error ε is less than a specified ε̄, specifically
defined for each application. The ideal case is the one in which the distribution
of energy norm ‖e‖e (see A.20) is uniform on all elements. Thus, the permissible
error is

PE = ε̄ ‖u‖e = ε̄

√
‖û‖2e + ‖e‖2e,

where
‖e‖2e = ‖u‖2e − ‖û‖

2
e .
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As already stated, we could require that the error is distributed equally on each
element, so that we can require that the error for the kth element is

‖e‖e,k < ε̄

√
‖û‖2e + ‖e‖2e

Mh
≡ ēm, (2.33)

where Mh is the total number of elements in the mesh and ēm is the error
energy required for each element. The elements for which Equation (2.33) are
candidates for refinement. This means we can refine those elements only, re-
ducing their size. In this case, the technique of mesh subdivision is employed,
but its efficiency is dependant on the fact that, despite the reasonable number
of degrees of freedom, the number of trial solutions may be excessive.

It can be shown a more efficient way of refining basing on the energy error
is performing a complete remeshing, creating a new mesh which satisfies the
condition of Equation (2.33) for all the elements k in the mesh. We can suppose,
for instance,

‖e‖k ∝ h
p
k

where hk is the size of the kth element and p is the order of the polynomial used
in the approximation. This means the new element size should be no larger
than

h̄k =

(
‖e‖k
ēm

)− 1
p

hk.

2.10.2 p- and hp-refinement
Nonuniform p-refinement is possible, and it can be done hierarchically. However,
generalizing the process is difficult and many assumptions are needed about the
decrease of the error. More information about this can be found in [31, 34].

hp-refinement is very interesting and recent works have proved it to be an
efficient technique of refining. An efficient methodology has been proposed in
[39, 34]. The first step requires to pursue through h-refinement with lowest-
order elements an accuracy around 5% with uniform energy norm error. After
this, a p-refinement is performed uniformly on the elements. The result is an
efficient procedure with easy implementation.

Relevant in this regard is theHERMES project : Hermes is a free C++/Python
library for rapid prototyping of adaptive FEM and hp-FEM solvers developed
by an open source community around the hp-FEM group at the University of
Nevada, Reno. The library has a clean design and modular structure, and it is
available under the GPL license (Version 2, 1991).
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Chapter 3

Bézier, B-spline, NURBS and
T-spline

The mathematical representation of curves, surfaces and solids is fundamental
in a design process. It will be shown in Chapter 4 that these structures will be
used in the analysis as well, making these technologies with their properties key
concepts in a production environment.

3.1 Analytical representation
The most common representation forms of a curve or of a surface are the implicit
and the parametric form.

In the implicit form, the equation is given in a way in which the dependent
variable is not given explicitly in terms of the independent variables. The general
form of an implicit equation is

f (x1, x2, . . . , xn, y) = 0.

A surface lying on the xy plane is then written

f (x, y) = 0.

By contrast, the explicit representation is given so that the dependent variable
is explicitly given as a function of the independent variables:

y = f (x1, xx, . . . , xn) .

A different way of representing an equation is the parametric form

F (ξ) = (g1 (ξ) , g2 (ξ) , . . . , gn (ξ)) , c ≤ ξ ≤ d.

Each coordinate of an element in im (F ) is represented separately as an explicit
function of an independent parameter.

Example 3.1. The ellipse in Figure 3.1a can be expressed with the implicit
form

x2

3.52
+
y2

22
= 1 (3.1)
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Figure 3.1: (a) Ellipse on the xy plane defined using a parametric or an implicit
form. (b) Ellipse on the xy plane defined using an explicit form.

Implicit form Parametric form
Curve c (x, y) = 0 C (ξ) = (x (ξ) , y (η))
Surface s (x, y, z) = 0 S (ξ, η) = (x (ξ, η) , y (ξ, η) , z (ξ, η))

Table 3.1: Comparison between parametric and implicit forms of curves on the
xy plane and surfaces in the xyz space.

or with the parametric form

C (ξ) = (x (ξ) , y (ξ)) = (4 · cos (ξ) , 2 · sin (ξ)) .

The explicit form, instead, cannot express the entire ellipse as it doesn’t fit the
definition of function. Solving Equation 3.1 by y we get

y (x) = ± 2

3.5

(
−x2 + 3.52

) 1
2 .

The positive part is plotted in Figure 3.1b.

A widely used scheme for writing surfaces in the xyz space is the tensor
product scheme. This scheme can be expressed through the analytic form

S (ξ, η) =

n∑
i=0

m∑
j=0

fi (ξ) gj (η) bi,j , a ≤ ξ ≤ b,
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Figure 3.2: Sphere in the xyz space.

where
bi,j = (xi,j , yi,j , zi,j) .

However, it is possible to express a surface again both with the implicit form

f (x, y, z) = 0,

and with the explicit form
z = f (x, y) .

Example 3.2. The sphere in Figure 3.2 can be expressed by the implicit form

x2 + y2 + z2 − 1 = 0

or with the parametric form

S (ξ, η) = (sin ξ · cosη, sinξ · sinη, cosξ) , 0 ≤ ξ ≤ π, 0 ≤ η ≤ 2π.

3.2 Power basis curves and surfaces
It can be seen from the general form of a parametric curve in Table 3.1 that
the class of curves definable is very large. Anyway, such a general form presents
some difficulties which suggest the need for a restriction in order to be more
practical. A good class of functions to use is the class of the polynomials.

Hence, the general form of a nth-degree power basis curve is:

C (ξ) = (x (ξ) , y (ξ) , z (ξ))

=

n∑
i=0

aiξ
i

= ([ai]
n
i=0)

T [
ξi
]n
i=0

,
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with b ≤ ξ ≤ c. The ai’s are the row vectors (xi, yi, zi) and the n+ 1 functions
ξi are called basis (or blending) functions.

Polynomials are a good choice as they’re efficiently represented and man-
aged by computers and are mathematically simple to handle. Unfortunately
polynomials are not capable of representing many kinds of important curves. In
these cases it is necessary to approximate.

Following the tensor product scheme, it is simple to guess that a power basis
surface can be represented in a similar way:

S (ξ, η) = (x (ξ, η) , y (ξ, η) , z (ξ, η))

=

n∑
i=0

m∑
j=0

ai,jξ
iηj

=
([
ξi
]n
i=0

)T
[ai,j ]

i=n,j=m
i,j=0

[
ηj
]m
j=0

where {
ai,j = (xi,j , yi,j , zi,j)
b ≤ ξ ≤ c .

3.3 Bézier curves and surfaces
Bézier curves use polynomials like the power basis representation. This fact
makes the two representations equivalent, where by equivalent it means any
curve representable with the power basis form is representable even with the
Bézier form. However, the power basis representation shows three disadvan-
tages:

• the coefficients ai convey almost no geometrical meaning to the user;

• algorithms for processing power basis curves have a more algebraic con-
notation rather than geometrical;

• more prone to round-off error.

Bézier curves improve the power basis representation relieving these problems.
An nth-degree Bézier curve is defined by

C (ξ) =

n∑
i=0

Bni (ξ)P i, a ≤ ξ ≤ b.

The functions

Bni (ξ) =
n! · ξi (1− ξ)n−i

i! · (n− i)!

are the basis functions (nth-degree Bernstein polynomial), similarly to the terms
ξi of the power basis representation, and the P i’s are called control points.

Example 3.3. The Bézier curve in two dimensions given in the figure 3.3a,
for instance, can be plotted using the Bernstein polynomials represented in the
figure 3.3b, using the control points

P 0 = (0, 0) , P 1 = (1, 1) , P 2 = (2, 0.5) ,
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Figure 3.3: Example of (a) Bézier curve on the xy plane with (b) its Bernstein
polynomials.

P 3 = (3, 0.5) , P 4 = (0.5, 1.5) , P 5 = (1.5, 0) .

If, instead, the control points are given in a three-dimensional space

P 0 = (0, 0, 0) , P 1 = (1, 1, 1) , P 2 = (2, 0.5, 0) ,

P 3 = (3, 0.5, 0) , P 4 = (0.5, 1.5, 0) , P 5 = (1.5, 0, 1) ,

then a three-dimensional Bézier curve is generated (see Figure 3.4).

A nonrational Bézier surface is obtained by using the expression

S (ξ, η) =

n∑
i=0

m∑
j=0

Bni (ξ)Bmj (η)P i,j ,

{
a ≤ ξ ≤ b
c ≤ η ≤ d .

The control points P i,j form a bidirectional net like the one illustrated in the
example Figure 3.5.

3.3.1 Rational Bézier curves and surfaces
There is a considerable amount of important shapes which cannot be represented
with polynomials only. Curves or surfaces such as circles, cones, ellipses, spheres,
etc..., for instance, can be represented with rational functions, which are ratios
of polynomials:

x (ξ) =
χ (ξ)

w (ξ)
, y (ξ) =

υ (ξ)

w (ξ)
.

An nth-degree rational Bézier curve is defined

C (ξ) =

n∑
i=0

Bni wiP i

n∑
i=0

Bni (ξ)wi

, a ≤ ξ ≤ b, (3.2)
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Figure 3.4: Example of (a) Bézier curve in the xyz space with (b) its Bernstein
polynomials.
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Figure 3.5: Example of a Bézier surface in the xyz space define by its control
points.
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where the wi’s are scalars called weights. It is possible to rewrite the definition
(3.2) using the notation

C (ξ) =

n∑
i=0

Rni (ξ)P i, a ≤ ξ ≤ b,

where
Rni (ξ) =

Bni (ξ)wi
n∑
î=0

Bn
î

(ξ)wî

are called rational basis functions.
It is possible to change again the representation of the rational Bézier curves

using a new interpretation which yields efficient processing and storage. The
usage of homogeneous coordinates permits to represent a rational curve in an
n-dimensional space as a curve in n + 1 dimensions. If P = (x, y, z) is a point
in a 3-dimensional space, it can be represented as Pw = (wx,wy,wz, w) in a
4-dimensional space. A function H is defined as a mapping of a point

P = H (Pw) = H ((x, y, z, w)) =

{ (
x
w ,

y
w ,

z
w

)
w 6= 0

(x, y, z) w = 0

to the hyperplane w = 1. Employing this concept, a new definition of a rational
Bézier curve in a 3-dimensional space can be the nonrational Bézier curve

Cw (ξ) =

n∑
i=0

Bni (ξ)Pwi
i

defined in a 4-dimensional space. Applying the transformation H to Cw (ξ) we
get the nonrational Bézier curve as the projection of the rational curve on the
plane w = 1.

Example 3.4. Consider we want to represent the 2-dimensional rational Bézier
curve with the control points

P 0 = (1, 0) , P 1 = (1, 1) , P 2 = (0, 1) ,

and with the weights
w0 = 1, w1 = 1, w2 = 2.

It is possible to write the curve

C (ξ) =

2∑
i=0

Bni (ξ)wiP i

2∑
i=0

Bni (ξ)wi

or using the rational basis functions:

C (ξ) =

2∑
i=0

Rni (ξ)P i, R
n
i (ξ) =

Bni (ξ)wi
2∑
î=0

Bn
î

(ξ)wî

.
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Figure 3.6: Example of mapping of a nonrational Bézier curve (black curve in
figure) to a rational Bézier curve (red curve in figure).

In both cases the representation is the one of the black curve of the figure
3.6. It is possible, as stated above, to use a better notation, moving to a
higher dimension. The control points P i = (xi, yi) needs to be redefined to
Pwi
i = (wixi, wiyi, wi). This way, the new curve can be represented in the

3-dimensional space like the red curve in the figure 3.6.

A rational Bézier surface can be written

S (ξ, η) =

n∑
i=0

m∑
j=0

Bni (ξ)Bmj (η)wi,jP
w
i,j

n∑
i=0

m∑
j=0

Bni (ξ)Bmj (η)wi,j

,

{
a ≤ ξ ≤ b
c ≤ η ≤ d

or using a nonrational expression

Sw (ξ, η) =

n∑
i=0

m∑
j=0

Bni (ξ)Bmj (η)Pw
i,j ,

{
a ≤ ξ ≤ b
c ≤ η ≤ d .
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3.4 Univariate and multivariate B-splines
Both Bézier and power basis curves are affected by some shortcomings:

• a high degree polynomial is needed to satisfy many constraints;

• a high degree is required to approximate some shapes;

• local control of the curve is difficult.

A solution to these points is to employ piecewise-polynomials or piecewise-
rational polynomials. The idea is to construct the curves dividing the domain
and associating each part of the domain with a distinct polynomial. Points
separating different parts of the domain are called breakpoints. Each segment
of the B-spline curve connects to another on the breakpoint with some level of
continuity: a curve C (ξ) is said to be Ck continuous at the breakpoint ξi if
C

(j)
i (ξi) = C

(j)
i+1 (ξi), ∀ 0 ≤ j ≤ k.

A good choice of B-spline basis functions is that discussed in the subsection
3.4.1.

3.4.1 B-spline basis functions

Given is a set Ξ = [ξo, ξ1, . . . , ξm] where ξi ∈ R, i = 0, . . . ,m and ξi ≤ ξi+1,
i = 0, . . . ,m− 1. The ξi’s are called knots and Ξ is called knot vector. The ith
B-spline basis function of degree p (and order p+ 1) is

N0
i (ξ) =

{
1, ξi ≤ ξ < ξi+1

0, otherwise ,

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

·Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

·Np−1
i+1 (ξ) . (3.3)

Definition 3.5. A knot vector of the form

Ξ =

a, . . . , a︸ ︷︷ ︸
p+1

, ξp+1, . . . , ξm−p−1, b, . . . , b︸ ︷︷ ︸
p+1


where p is the degree and m is the number of elements of the knot vector, is
said to be nonperiodic or clamped or open.

Example 3.6. In Figure 3.7 B-spline basis functions over the knot vector Ξ =
[0, . . . , 0, 1, 4, 6, 8, . . . , 8] of increasing degree are represented.

Property1: This choice of the basis functions guarantees the local support prop-
erty : Np

i (ξ) = 0 if ξ /∈ [ξi, ξi+p+1). This fact can be simply seen in Figure
3.7.

Property2: In any given knot span [ξj , ξj+1) at most p + 1 of the Np
i are

nonzero, namely the functions Np
j−p, . . . , N

p
j .

Property3: The property of nonnegtivity states that Np
i (ξ) ≥ 0 for all i, p

and ξ.
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Figure 3.7: Example of B-spline basis functions over the knot vector Ξ =
{0, ..., 0, 1, 4, 6, 8, ..., 8} of increasing degree.
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Property4: The property of partition of unity states that for any arbitrary
knot span [ξi, ξi+1),

∑i
j=i−pN

p
j (ξ) = 1 for all ξ ∈ [ξi, ξi+1).

Property5: Np
i (ξ) is C∞ ((ξj , ξj+1)) for all j. At a knot Np

i (ξ) is p− k times
continuously differentiable, where k is the multiplicity of the knot.

Property6: The set of all B-spline basis functions of pth-degree Np
i (ξ), i =

0, . . . , n defined on the knot vector

Ξ =

ξ0, . . . , ξ0︸ ︷︷ ︸
s0

, ξ1, . . . , ξ1︸ ︷︷ ︸
s1

, . . . , ξk, . . . , ξk︸ ︷︷ ︸
sk


forms a basis of the space SpΞ of the of the piecewise-polynomials of degree
p with continuity Crj at ξj with rj = p − sj . It is possible to show that
the dimension of the space SpΞ is

dim (SpΞ) = k (p+ 1)−
k∑
j=0

(rj + 1). (3.4)

3.4.2 Algorithms for B-spline basis functions
A frequent need when working with B-spline basis functions is to compute all
the nonvanishing functions in a specific point ξ. Basing on the equations (3.3),
suppose we want to compute all the nonvanishing functions in ξ ∈ [ξi, ξi+1)
when p = 2, we get:

N2
i−2 (ξ) =

ξ − ξi−2

ξi − ξi−2
N1
i−2 (ξ) +

ξi+1 − ξ
ξi+1 − ξi−1

N1
i−1︸ ︷︷ ︸

(∗)

(ξ) ,

N2
i−1 (ξ) =

ξ − ξi−1

ξi+1 − ξi−1
N1
i−1︸ ︷︷ ︸

(∗)

(ξ) +
ξi+2 − ξ
ξi+2 − ξi

N1
i︸︷︷︸

(∗∗)

(ξ) ,

N2
i (ξ) =

ξ − ξi
ξi+2 − ξi

N1
i︸︷︷︸

(∗∗)

(ξ) +
ξi+3 − ξ
ξi+3 − ξi+1

N1
i+1 (ξ) .

The asterisks underline the presence, in different basis functions, of the same
functions. It is possible, therefore, to reuse the same value, instead of calculating
it more than once. Algorithm 3.2 considers this improvement and computes all
the functions which are not zero in the provided point ξ. As a conceptual
scheme, what we have to compute is the inverted triangular table

N0
i

N1
i−1

N1
i

· · ·

Np
i−p

Np
i−p+1

...

Np
i

. (3.5)
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Algorithm 3.1 Algorithm for the determination of the knot span in which the
provided value lies.

1% findSpan f inds in which knot span a s p e c i f i c
2% value of x i i s to be found .
3% Input :
4% n: max index of the contro l po ints (n+1 contro l po ints ) ;
5% p : degree of the B−sp l i ne bas i s funct ions ;
6% xi : sca lar value to be found ;
7% Xi : open knot vector {xi_0 , . . . , xi_n , . . . , x_{n+p+1}}.
8% Output :
9% i : knot span [ xi_i , xi_{ i+1}) in which u l i e s .
10function i = findSpan (n , p , xi , Xi )
11% Spec ia l case .
12i f x i == Xi (n+2) , i = n ; return ; end ;
13% Binary search .
14low = p ;
15high = n+1;
16i = f loor ( ( low + high ) . / 2 ) ;
17while x i < Xi ( i +1) | | x i >= Xi ( i +2)
18i f x i < Xi ( i +1); high = i ;
19else low = i ; end ;
20i = f loor ( ( low + high ) . / 2 ) ;
21end

Algorithm 3.2 Algorithm for the evaluation of every nonvanishing B-spline
basis function in the provided value.

1% Compute the nonvanishing bas i s funct ions .
2% Input :
3% i : index of the bas i s funct ion to compute ( t h i s va lue cannot be

smal ler
4% than p) ;
5% xi : va lue in which the bas i s funct ion i s being eva luated ;
6% p : degree of the bas i s funct ion ;
7% Xi : knot vector over which the bas i s funct ion i s being b u i l t .
8% Output :
9% N: vector containing the value of a l l the nonvanishing bas i s

funct ions :
10% N(1)=N_{i−p } , . . . ,N(p+1)=N_{ i }.
11function N = basisFuns ( i , xi , p , Xi )
12% Prea l loca t ion .
13N = zeros (1 , p+1) ;
14l e f t = zeros (1 , p+1) ;
15r i gh t = zeros (1 , p+1) ;
16% Computation of the inverse t r i angu la r t a b l e s t a r t i n g from degree 0.
17N(1) = 1 ;
18for j = 1 : p
19l e f t ( j +1) = xi−Xi ( i+1− j +1) ;
20r i gh t ( j +1) = Xi ( i+j+1)−x i ;
21saved = 0 ;
22for r = 0 : j−1
23temp = N( r+1) . / ( r i g h t ( r+1+1)+l e f t ( j−r+1) ) ;
24N( r+1) = saved+r i gh t ( r+1+1) . ∗ temp ;
25saved = l e f t ( j−r+1) . ∗ temp ;
26end
27N( j +1) = saved ;
28end
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Algorithm 3.3 Algorithm for the computation of the ith B-spline basis function
in ξ.

1% Evaluates the value of the i−th B−sp l i ne bas i s funct ion of degree p over
2% the knot vector Xi in x i .
3% Input :
4% p : degree of the funct ion to eva luate ;
5% m: number of knots − 1;
6% Xi : knot vector over which the bas i s funct ion i s b u i l t ;
7% i : index of the B−sp l i ne bas i s funct ion to compute ;
8% xi : point where to eva luate the B−sp l i ne bas i s funct ion .
9% Output :
10% Nip : va lue of the B−sp l i ne bas i s funct ion in x i .
11function Nip = basisFun (p , m, Xi , i , x i )
12% Check to see i f we ’ re eva lua t ing the f i r s t or the l a s t bas i s funct ion at
13% the beginning or at the end of the knot vector .
14i f ( i == 0 && xi == Xi (0+1)) | | ( i == m−p−1 && xi == Xi (m+1))
15Nip = 1 ; return ;
16end
17% When x i i s out of the domain i t i s s e t to zero .
18i f ( x i < Xi ( i +1) | | x i >= Xi ( i+p+1+1))
19Nip = 0 ; return ;
20end
21% Prea l loca t ion and computation of the temparary va lues of the funct ions to
22% be used according to the t r i angu la r t a b l e .
23N = zeros (p+1);
24for j = 0 : p
25i f x i ( l ) >= Xi ( i+j+1) && xi ( l ) < Xi ( i+j +1+1), N( j +1) = 1 ;
26else N( j+1) = 0 ; end ;
27end
28% Computation of the r e s t of the t r i angu la r t a b l e .
29for k = 1 : p
30i f N(1) == 0 , saved = 0 ;
31else saved = ( ( x i ( l )−Xi ( i +1)) .∗N(0+1)) ./ ( Xi ( i+k+1)−Xi ( i +1)) ; end ;
32for j = 0 : p−k+1−1
33X i l e f t = Xi ( i+j +1+1);
34Xi r i ght = Xi ( i+j+k+1+1);
35i f N( j+1+1) == 0
36N( j +1) = saved ;
37saved = 0 ;
38else
39temp = N( j +1+1)./( Xir ight−X i l e f t ) ;
40N( j +1) = saved+(Xir ight−x i ( l ) ) . ∗ temp ;
41saved = ( x i ( l )−X i l e f t ) . ∗ temp ;
42end
43end
44end
45Nip = N( 1 ) ;

In case we only want to compute a single B-spline basis function, we can
try to produce an algorithm considering which basis functions are needed and
which are not. We can come up with this triangular table:

N0
i

N0
i+1

...

N0
i+p−1

N0
i+p

N1
i

...

N1
i+p−1

. . .
Np−1
i

Np−1
i+1

Np
i . (3.6)

These are the only functions needed when computing Np
i , and the procedure in

Algorithm 3.3 computes this table, beginning from the degree 0.
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Figure 3.8: Example of derivatives of the basis functions of Example 3.6 with
p = 3.

3.4.3 Algorithms for B-spline basis functions derivatives
The derivative of a B-spline basis function Np

i (ξ) can be computed with

∂Ni,p (ξ)

∂ξ
=

p

ξi+p − ξi
Np−1
i (ξ)− p

ξi+p+1 − ξi+1
Np−1
i+1 (ξ) . (3.7)

Example 3.7. Using the recursive definition (3.7) on the B-spline basis func-
tions of degree p = 3 of Example 3.6 it is possible to obtain the curves of Figure
3.8.

Example 3.8. Using the recursive definition (3.7) on the B-spline basis func-
tions of degree p = 3 built over the knot vector

Ξ = {0, 0, 0, 0, 2, 4, 4, 6, 6, 6, 8, 8, 8, 8}

it is possible to obtain the curves of Figure 3.9. These curves shows the be-
haviour in case of single, double and triple knots.

The derivatives of the B-spline basis functions are important as they lead to
another important property:

Property7 In the interior of a knot span, all the derivatives of Np
i (ξ) exist (as

it is a polynomial); at a knot it is p− k times continuously differentiable,
where k is the multiplicity of the knot. This means that increasing the
degree increases the continuity whereas increasing the knot multiplicity
decreases the continuity.

Two efficient algorithms for the determination of the derivatives of B-spline basis
functions are given: Algorithm 3.4 computes the derivatives of order 0 ≤ k ≤ n
of all the nonvanishing functions in the given value; Algorithm 3.6 determines
the derivatives of order 0 ≤ k ≤ n of the ith function.
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Figure 3.9: Example of derivatives of the B-spline basis functions of degree p = 3
built over the knot vector Ξ = {0, 0, 0, 0, 2, 4, 4, 6, 6, 6, 8, 8, 8, 8}.

Algorithm 3.4 Algorithm for the determination of the derivatives of order
0 ≤ k ≤ n of all the nonvanishing B-spline basis functions in the specified ξ
(continues to Algorithm 3.5).

1% derivsBasisFuns computes the nonzero bas i s funct ions and
2% the i r d e r i v a t i v e s .
3% Input :
4% i : index of the bas i s funct ion to compute ( i =0 ,1 , . . . ,n ) .
5% xi : point where the de r i v a t i v e s are eva luated ;
6% p : degree of the bas i s funct ions ;
7% n: def ined according ly to the knot vector ;
8% Xi : knot vector .
9% Output :
10% ders : bidimensional matrix where the element in pos i t i on
11% (k , j ) i s the (k−1)−th d e r i v a t i v e of the funct ion
12% N_{i−p+j , p} with 0<=k<=n and 0<=j<=p .
13function ders = der ivsBas i sFuns ( i , xi , p , n , Xi )
14% Firs t eva luate the bas i s funct ions .
15ndu (1 , 1) = 1 ;
16l e f t (p+1) = 0 ;
17r i gh t (p+1) = 0 ;
18for j =1:p
19l e f t ( j +1) = xi−Xi ( i+1− j +1);
20r i gh t ( j +1) = Xi ( i+j+1)−x i ;
21saved = 0 ;
22for r=0: j−1
23ndu( j +1, r+1) = r i gh t ( r+2)+ l e f t ( j−r +1);
24temp = ndu( r+1, j ) . / ndu( j +1, r +1);
25ndu( r+1, j +1) = saved+r i gh t ( r +2).∗ temp ;
26saved = l e f t ( j−r +1).∗ temp ;
27end
28ndu( j +1, j +1) = saved ;
29end
30% Load the bas i s funct ions .
31ders (n+1, p+1) = 0 ;
32for j =1:p+1
33ders (1 , j ) = ndu( j , p+1);
34end
35% ( continues . . . )
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Algorithm 3.5 Algorithm for the determination of the derivatives of order
0 ≤ k ≤ n of the ith B-spline basis function in the specified ξ (continues from
Algorithm 3.4).

1% ( . . . continues )
2% Evaluation of the d e r i v a t i v e s .
3% Loop over funct ion index .
4a (p , p) = 0 ;
5for r=0:p
6% Indices for the matrix containing the d e r i v a t i v e s .
7s1 = 0 ; s2 = 1 ;
8a (1 , 1) = 1 ;
9% Loop for the computation of the kth de r i v a t i v e .
10for k=1:n
11d = 0 ;
12rk = r−k ; pk = p−k ;
13i f r >= k
14a ( s2+1, 0+1) = a ( s1+1, 0+1)./ndu(pk+2, rk+1);
15d = a ( s2+1, 0+1).∗ndu( rk+1, pk+1);
16end
17i f rk >= −1, j 1 = 1 ;
18else j 1 = −rk ; end ;
19i f r−1 <= pk , j2 = k−1;
20else j 2 = p−r ; end ;
21for j=j1 : j 2
22a ( s2+1, j +1) = . . .
23( a ( s1+1, j+1)−a ( s1+1, j −1+1))./ndu(pk+1+1, rk+2);
24d = d+a ( s2+1, j +1).∗ndu( rk+j +1, pk+1);
25end
26i f r <= pk
27a ( s2+1, k+1) = −a ( s1+1, k ) . / ndu(pk+2, r +1);
28d = d+a ( s2+1, k+1).∗ndu( r+1, pk+1);
29end
30ders ( k+1, r+1) = d ;
31j=s1 ; s1 = s2 ; s2 = j ;
32end
33end
34% Mult ip ly by the correc t f a c t o r s .
35r = p ;
36for k=1:n
37for j =0:p
38ders ( k+1, j +1) = ders ( k+1, j +1).∗ r ;
39end
40r = r . ∗ ( p−k ) ;
41end
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N0
i (ξ) N1

i−1 (ξ) N2
i−2 (ξ)

ξi+1 − ξi N1
i (ξ) N2

i−1 (ξ)
ξi+1 − ξi−1 ξi+2 − ξi N2

i (ξ)

Table 3.2: Scheme of structure ndu(i,j) used in Algorithm 3.4 to store the
elements necessary for the computation.

Algorithm 3.4 is based on a generalization of Equation (3.7):

N
p,(k)
i (ξ) =

p!

(p− k)!

k∑
j=0

ak,jN
p−k
i+j (ξ),

where
a0,0 = 1,

ak,0 =
ak−1,0

ξi+p−k+1 − ξi
,

ak,j =
ak−1,j − ak−1,j−1

ξi+p+j−k+1 − ξi+j
, j = 1, . . . , k − 1,

ak,k =
−ak−1,k−1

ξi+p+1 − ξi+k
.

By analyzing this equation, it is simple to see that we need the inverted trian-
gular table, the differences of knots and the differences of the ak,j ’s. A possible
structure to maintain these data is a table like Table 3.2. In Table 3.2 the
necessary data to compute the ak,j ’s and then the Np,(k)

i ’s is present.
Algorithm 3.6 is based, instead, on the Equation

N
p,(k)
i (ξ) = p

(
N
p−1,(k−1)
i (ξ)

ξi+p − ξi
−
N
p−1,(k−1)
i+1 (ξ)

ξi+p+1 − ξi+1

)
, (3.8)

which can be derived by repeated differentiation of Equation (3.7). By using
Equation (3.8), for instance, for p = 3 and k = 0, . . . , n, with n = 3 we get:

N
3,(1)
i (ξ) = 3

(
N2
i (ξ)

ξi+3 − ξi
−

N2
i+1

ξi+4 − ξi+1

)
,

N
3,(2)
i (ξ) = 3

(
N

2,(1)
i (ξ)

ξi+3 − ξi
−

N
2,(1)
i+1

ξi+4 − ξi+1

)
,

N
3,(3)
i (ξ) = 3

(
N

2,(2)
i (ξ)

ξi+3 − ξi
−

N
2,(2)
i+1

ξi+4 − ξi+1

)
.

Now, we can use some tables to compute all and only the values needed to get
all the derivatives up to degree 3 of the basis functions. The first computes the
ith basis function of degree 3 (the triangular table of (3.6)):

N0
i

N0
i+1

N0
i+2

N3
i+3

N1
i

N1
i+1

N1
i+2

N2
i

N2
i+1

N3
i .
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Then, the kth derivative, 0 ≤ k ≤ n, can be computed with a table of this kind:

Np−k
i

...

Np−k
i+k

· · ·
N

2,(k−1)
i

N
2,(k−1)
i+1

N
3,(k)
i .

3.4.4 Univariate B-splines

The general concept of the B-spline curves is to maintain the same structure
used to define the Bézier curves or the power basis curves, designing the basis
functions according to the idea exposed above:

C (ξ) =

n∑
i=0

fi (ξ)P i, a ≤ ξ ≤ b.

As already stated, a good choice for the fi (ξ)’s are the basis functions defined
in Subsection 3.4.1; this leads to the form

C (ξ) =

n∑
i=0

Np
i (ξ)P i, a ≤ ξ ≤ b,

where the P i’s are the control points, and the Np
i (ξ)’s are the pth-degree B-

spline basis functions of the equation (3.3) defined on the nonuniform knot
vector

Ξ =

a, . . . a︸ ︷︷ ︸
p+1

, ξp+1, . . . , ξn, b, . . . , b︸ ︷︷ ︸
p+1

 , |Ξ| = n+ p+ 2. (3.9)

The space of the B-splines of degree p built over the knot vector Ξ is denoted
by

S (Ξ, p) = span {Np
i (ξ)}ni=0 .

Notation 3.9. S (Ξ, p) will be written with the alternative notation SpΞ in case
a shorter form is preferable.

Example 3.10. Reconsidering the example 3.3, it is possible to use the same
control points to build a B-spline curve. It is necessary to define a knot vector
in this case, Ξ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} for instance. The curves in the
2-dimensional and the 3-dimensional space are represented in Figures 3.10 and
3.11.

The properties of the B-spline curves are listed below.

Property1: If n = p and Ξ = {a, . . . , a, b, . . . , b} then C (ξ) is a Bézier curve.

Property2: Endpoint interpolation: C (a) = P 0 and C (b) = P n.

Property3: Variation diminishing property: no plane has more intersections
with the curve than with the control polygon.
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Algorithm 3.6 Algorithm for the determination of the derivatives of order
0 ≤ k ≤ n of the ith B-spline basis function in the specified ξ.

1% derivsBasisFun determines the de r i v a t i v e s of the i−th B−sp l i ne bas i s
2% funct ion of degree p b u i l t over the knot vector Xi in the point x i of
3% degree up to degree n .
4% Input :
5% p : degree of the funct ion ;
6% Xi : knot vector ;
7% i : index of the B−sp l i ne bas i s funct ion to d i f f e r e n t i a t e ;
8% xi : point in which to e v a l i a t e the de r i v a t i v e ;
9% n: max degree of d e r i v a t i v e to f ind ;
10% Output :
11% der iv s : der i v s ( k ) contains the k−th−1 de r i va t i v e of the funct ion in x i .
12function de r i v s = der ivsBas i sFun (p , Xi , i , xi , n )
13% Check i f x i i s outs ide the domain .
14de r i v s = zeros (n+1);
15i f x i < Xi ( i +1) | | x i >= Xi ( i+p+1+1)
16for k = 0 : n , d e r i v s ( k+1) = 0 ; end ;
17return ;
18end
19for j = 0 : p
20i f x i >= Xi ( i+j+1) && xi < Xi ( i+j +2) , N( j +1, 1) = 1 ;
21else N( j +1, 1) = 0 ; end ;
22end
23% Compute the t r i an g l e .
24for k = 1 : p
25i f N(0+1 , k−1+1) == 0 , saved = 0 ;
26else saved = ( ( xi−Xi ( i +1)) .∗N(0+1 , k−1+1))./(Xi ( i+k+1)−Xi ( i +1)) ; end ;
27for j = 0 : p−k+1−1
28X i l e f t = Xi ( i+j +1+1);
29Xi r i ght = Xi ( i+j+k+1+1);
30i f N( j+1+1, k−1+1) == 0
31N( j +1, k+1) = saved ;
32saved = 0 ;
33else
34temp = N( j+1+1, k−1+1)./( Xir ight−X i l e f t ) ;
35N( j +1, k+1) = saved+(Xir ight−x i ) . ∗ temp ;
36saved = ( xi−X i l e f t ) . ∗ temp ;
37end
38end
39end
40for k = 1 : n
41for j = 0 : k , ND( j +1) = N( j +1, p−k+1); end ;
42for j j = 1 : k
43i f ND(1) == 0 , saved = 0 ;
44else saved = ND(0+1) ./( Xi ( i+p−k+j j +1)−Xi ( i +1)) ; end ;
45for j = 0 : k− j j
46X i l e f t = Xi ( i+j +2);
47Xi r i ght = Xi ( i+j+p+j j +1);
48i f ND( j+1+1) == 0
49ND( j+1) = (p−k+j j ) . ∗ saved ;
50saved = 0 ;
51else
52temp = ND( j +2)./( Xir ight−X i l e f t ) ;
53ND( j +1) = (p−k+j j ) . ∗ ( saved−temp ) ;
54saved = temp ;
55end
56end
57end
58de r i v s ( k+1) = ND( 1 ) ;
59end
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Figure 3.10: Example of B-spline curve in the 2-dimensional space built
using the control points of the example 3.3 and the knot vector Ξ =
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. Below the B-spline basis functions used are re-
ported.
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Figure 3.11: Example of B-spline curve in the 3-dimensional space built
using the control points of the example 3.3 and the knot vector Ξ =
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. Below the B-spline basis functions used are re-
ported.
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Algorithm 3.7 Algorithm to compute the value in the physical space of a curve
given its value in the parametric space.

1% bsplineCurvePoint determines the value of the B−sp l i ne curve in the
2% point x i of the parametric space .
3% Input :
4% n: sca lar tha t ind i ca t e s tha t n+1 i s the number of contro l po ints ;
5% p : degree of the cure ;
6% Xi : knot vector ;
7% P: contro l po ints where P( i , j ) ind i ca t e s the j−th coordinate of the
8% i−th contro l point .
9% xi : point of the parametric space where to eva lu te the curve .
10% Output :
11% C: ( xi , eta ) i s the value of the curve in the two d i r ec t i ons .
12function C = bspl ineCurvePoint (n , p , Xi , P, x i )
13% Find the span in which x i l i e s .
14span = findSpan (n , p , xi , Xi ) ;
15% Determine a l l the nonvanishing B−sp l i ne bas i s funct ions in x i .
16N = basisFuns ( span , xi , p , Xi ) ;
17% Calcu lat ion of the value of the curve .
18C(2) = 0 ;
19for i = 0 : p
20C(1) = C(1)+N( i +1).∗P( span−p+i +1, 1 ) ;
21C(2) = C(2)+N( i +1).∗P( span−p+i +1, 2 ) ;
22end

3.4.5 Algorithm for B-spline curves

Algorithm 3.7 computes the value in the physical space1 of a curve in a specific
point in the parametric space2.

3.4.6 Algorithm for B-spline curves derivatives

Algorithm 3.8 is an efficient algorithm for evaluating the derivative of a B-spline
curve. The base for the algorithm is the equation

∂kC (ξ)

∂ξk
=

n∑
i=0

∂kNp
i (ξ)

∂ξ
P i, (3.10)

which is a simple application of the linearity of the derivative. Algorithm 3.8
computes all the derivatives of degree 0 ≤ k ≤ d in the vector CK(k) and takes
advantage of the algorithm presented previously.

3.4.7 Multivariate tensor-product B-splines

We can use the tensor product to obtain B-splines in higher dimension spaces:
assume d is the dimension of the B-spline we’re trying to build (for d = 2 we get
B-spline surfaces, for d = 3 we get B-spline solids). We need to define d knot
vectors denoted with

Ξα =

aα, . . . , aα︸ ︷︷ ︸
pα+1

, ξpα+1,α, . . . , ξnα,α, bα, . . . , bα︸ ︷︷ ︸
p+1

 , |Ξα| = nα + pα + 2,

1The physical space will be defined more precisely in 3.4.10.
2The parametric space will be defined more precisely in 3.4.10.
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Algorithm 3.8 Algorithm for the evaluation of the derivative of a B-spline
curve.

1% bspl ineCurveDerivs computes the de r i v a t i v e s of a B−sp l i ne curve
2% up to and inc lud ing dth de r i v a t i v e s for the curve provided .
3% Input :
4% n: def ined so tha t n+1 i s the number of contro l po ints ;
5% p : degree of the B−sp l i ne bas i s funct ion to use ;
6% Xi : knot vector in d i r ec t i on x i ;
7% P: bidimensional matrix containing the coordinates of the
8% contro l po ints on the rows : the kth coordinate of the
9% i t h contro l point i s P( i , k ) ;
10% xi : point where to eva luate the de r i v a t i v e of the curve ;
11% d : order of the de r i v a t i v e up to which we want to ca l cu l a t e them .
12% Output :
13% CK: bidimensional marix containing the de r i v a t i v e : CK(k , i )
14% is the i t h coordinate of the kth de r i v a t i v e where 0<=k<=d .
15function CK = bspl ineCurveDer ivs (n , p , Xi , P, xi , d )
16dxi = min ( [ d , p ] ) ;
17CK = zeros (d+1, 3 ) ;
18% I f p < d , higher order d e r i v a t i v e s are se t to zero .
19for k = p+1:d , CK(k+1) = 0 ; end ;
20span = findSpan (n , p , xi , Xi ) ;
21nder iv s = der ivsBas i sFuns ( span , xi , p , dxi , Xi ) ;
22for k = 0 : dxi
23CK(k+1, length (P( 1 , : ) ) ) = 0 ;
24for j = 0 : p
25CK(k+1, : ) = CK(k+1, :)+ nder iv s ( k+1, j +1).∗P( span−p+j +1, : ) ;
26end
27end

with α = 0, . . . , d−1. The tensor product B-spline basis functions can be written
as

Np0,...,pd
i0,...,id

, Np0

i0
⊗ . . .⊗Npd−1

id−1
.

The properties of the tensor-product B-spline basis functions for d = 2 are
listed below.

Property1: This choice of the basis functions guarantees the local support prop-
erty : Np

i (ξ)Nq
j (η) = 0 if (ξ, η) /∈ [ξi, ξi+p+1)× [ηj , ηj+q+1).

Property2: In any given rectangle [ξi0 , ξi0+1)×[ηj0 , ηj0+1) at most (p+ 1) (q + 1)
of the Np

i (ξ)Nq
j (η) are nonzero, namely the functions Np

i (ξ)Nq
j (η), for

i0 − p ≤ i ≤ i0 and j0 − q ≤ j ≤ j0.

Property3: The property of nonnegativity states that Np
i (ξ)Nq

j (η) ≥ 0 for
all i, j, p, q, ξ and η.

Property4: The property of partition of unity states that
∑n
i=0

∑m
j=0N

p
i (ξ)Nq

j (η) =
1 for all (ξ, η) ∈ [a0, b0]× [a1, b1].

Property5: Np
i (ξ)Nq

j (η) is C∞ ((ξi0 , ξi0+1)× (ηj0 , ηj0+1)) for all i, j, i0 and
j0. At a ξ (η) knot it is p − k (q − k) times differentiable in the ξ (η)
direction, where k is the multiplicity of the knot.

Property6: The set of all bivariate tensor-product B-spline basis functions of
pth-degree in the ξ direction and of qth-degree in the η directionNp

i (ξ)Nq
j (η),

i = 0, . . . , n and j = 0, . . . ,m defined on the knot vectors

Ξ =

ξ0, . . . , ξ0︸ ︷︷ ︸
sξ,0

, ξ1, . . . , ξ1︸ ︷︷ ︸
sξ,1

, . . . , ξk, . . . , ξk︸ ︷︷ ︸
sξ,k


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H =

η0, . . . , η0︸ ︷︷ ︸
sη,0

, η1, . . . , η1︸ ︷︷ ︸
sη,1

, . . . , ηl, . . . , ηl︸ ︷︷ ︸
sη,l


forms a basis of the space Sp,qΞ,H of the of the piecewise-polynomials of degree
p in the ξ direction and degree q in the η direction, with continuity Crξ,j in
direction ξ at ξj with rξ,j = p− sξ,j and with continuity Crη,j in direction
η at ηj with rη,j = q − sη,j . It is possible to show that the dimension of
the space Sp,qΞ,H is

dim
(
Sp,qΞ,H

)
=

k (p+ 1)−
k∑
j=0

(rξ,j + 1)

l (q + 1)−
l∑

j=0

(rη,j + 1)

.
(3.11)

The tensor product B-spline space is

S (Ξ0, . . . ,Ξd−1, p0, . . . , pd−1) , ⊗d−1
α=0S (Ξα, pα) ,

= span
({

N
p0,...,pd−1

i0,...,id−1

}n1,...,nd−1

i0=0,...,id−1=0

)
.

Notation 3.11. S (Ξ0, . . . ,Ξd−1, p0, . . . , pd−1) will be written with the alternative
notation Sp0,...,pd−1

Ξ0,...,Ξd−1
in case a shorter form is preferable.

Particularly important multivariate B-splines are the B-spline surfaces

S (ξ, η) =

n∑
i=0

m∑
j=0

Np
i (ξ)Nq

j (η)P i,j , a ≤ ξ ≤ b. (3.12)

Example 3.12. B-spline surfaces are built using bivariate tensor-product B-
spline basis functions. An example built over the knot vectors Ξ = H =
{0, 0, 0, 0.5, 1, 1, 1} with p = q = 2 can be seen in Figure 3.12.

The P i,j ’s form a net of control points and basis functions are defined over
the knot vectors

Ξ =

a, . . . , a︸ ︷︷ ︸
p+1

, ξp+1, . . . , ξn, b, . . . , b︸ ︷︷ ︸
p+1

 , |Ξ| = n+ p+ 2,

H =

c, . . . , c︸ ︷︷ ︸
q+1

, ηq+1, . . . , ηm, d, . . . , d︸ ︷︷ ︸
q+1

 , |H| = m+ q + 2.

Some important properties of the B-spline surfaces are listed below.

Property1: If n = p, m = q, Ξ = [a, . . . , a, b, . . . , b] and H = [a, . . . , a, b, . . . , b]
then S (ξ, η) is a Bézier surface.

Property2: Endpoint interpolation: the surface interpolates the four corner
control points S (a1, a2) = P 0,0, S (b1, a2) = P n,0, S (a1, b2) = P 0,m and
S (b1, b2) = P n,m.
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Figure 3.13: Example of B-spline surface built using the same control points
of Figure 3.5, p = q = 1 and the knot vectors Ξ = {0, 0, 0.5, 1, 1} and H ={

0, 0, 0.3, 0.6, 1, 1
}
.

Figure 3.14: Example of B-spline surface built using the same control points
of Figure 3.5, p = 1, q = 2 and the knot vectors Ξ = {0, 0, 0.5, 1, 1} and
H = {0, 0, 0, 0.5, 1, 1, 1}.
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Example 3.13. Reconsidering the image of Figure 3.5, an example of B-spline
surface built using the same control points is shown in Figures 3.13 and 3.14. In
the first case, both the degrees p and q are chosen so that the surface interpolates
exactly the control points. This is done choosing p = q = 1 with the knot vectors
Ξ = {0, 0, 0.5, 1, 1} and H =

{
0, 0, 0.3, 0.6, 1, 1

}
. In Figure 3.14 q = 2, so only

the other direction exactly interpolates the control points.

Using the tensor product, a solid can be expressed using three sets of basis
functions

S (ξ, η, ζ) =

n∑
i=0

m∑
j=0

l∑
k=0

Np
i (ξ)Nq

j (η)Nr
k (ζ)P i,j,k, a ≤ ξ ≤ b,

where the P i,j,k’s are the control points forming the control net, the Np
i ’s, the

Nq
j ’a and the Nr

k ’s are the B-spline basis functions defined over the knot vectors

Ξ =

a1, . . . , a1︸ ︷︷ ︸
p+1

, ξp+1, . . . ξn, b1, . . . , b1︸ ︷︷ ︸
p+1

 , |Ξ| = n+ p+ 2,

H =

a2, . . . , a2︸ ︷︷ ︸
q+1

, ηq+1, . . . ηm, b2, . . . , b2︸ ︷︷ ︸
q+1

 , |H| = m+ q + 2,

Z =

a3, . . . , a3︸ ︷︷ ︸
r+1

, ζr+1, . . . ζl, b3, . . . , b3︸ ︷︷ ︸
r+1

 , |Z| = l + r + 2.

3.4.8 Algorithm for B-spline surfaces

An algorithm for the computation of the value of the B-spline surface in a
specified point [ξ, η]

T is given in Algorithm 3.9.

3.4.9 Algorithms for B-spline surfaces derivatives

An algorithm for the computation of the value of a B-spline surface derivatives
in a specified value of the parametric space comes straightforwardly from the
definition in Equation (3.12) with the use of the linearity of the derivative:

∂k+lS (ξ, η)

∂kξ∂lη
=

n∑
i=0

m∑
j=0

∂kNp
i (ξ)

∂ξk
∂lNq

j (η)

∂ηl
P i,j (3.13)

=

[
∂kNp

i (ξ)

∂ξk

]T
[P r,s]

[
∂lNq

j (η)

∂ηl

]
, (3.14)

where, supposing ξ ∈
[
ξî, ξî+1

)
and η ∈

[
ηĵ , ηĵ+1

)
we have ξî − p ≤ r ≤ ξî and

ηĵ − q ≤ s ≤ ηĵ . An implementation of this is in Algorithm 3.10.
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Algorithm 3.9 Algorithm for the computation of the value of a B-spline surface
in [ξ, η]

T .

1% bsp l ineSur fPoint eva lua tes a B−sp l i ne sur face on a point ( xi , eta )
2% of the domain .
3% Input :
4% n: def ined acording ly to the knot vector Xi ;
5% p : degree in the f i r s t d i r ec t i on ;
6% Xi : knot vector in the f i r s t d i r ec t i on ;
7% m: def ined according ly to the knot vector Eta ;
8% q : degree in the second d i rec t i on ;
9% Eta : knot vector in the second d i r ec t i on ;
10% P: contro l po ints wr i t ten in the format P( xi , x_k , eta ) ;
11% xi : coordinate in the f i r s t d i r ec t i on on which the
12% surface i s being eva luated ;
13% eta : coordinate in the second d i r ec t i on on which the
14% surface i s being eva luated .
15% Output :
16% S: value of the sur face in the point ( xi , eta ) .
17function S = bsp l i n eSur fPo in t (n , p , Xi , m, q , Eta , P, xi , eta )
18xiSpan = findSpan (n , p , xi , Xi ) ;
19etaSpan = findSpan (m, q , eta , Eta ) ;
20Nxi = basisFuns ( xiSpan , xi , p , Xi ) ;
21Neta = basisFuns ( etaSpan , eta , q , Eta ) ;
22d = length (P(1 , 1 , : ) ) ;
23S(d) = 0 ;
24for i = 1 : d
25S( i ) = Nxi∗P( xiSpan−p+1: xiSpan+1, etaSpan−q+1: etaSpan+1, i )∗Neta ’ ;
26end

3.4.10 Support structures

B-splines and the CAD technologies which will be presented later all share some
key concepts and attain compatibility. It is interesting therefore to define some
useful structures to work with these technologies, which will be further used in
Isogeometric Analysis.

The first concepts are the parametric space, which is the space where the
domain of the parametric form is defined and the physical space, which is the
space where the codomain of the parametric form is defined. The splines which
will be defined map points in the parametric space in points in the physical
space. Another space which can be useful is the index space, which is created
by plotting the knots equidistantly, regardless of their actual spacing, labeling
them with their index. In the parametric space we define, in addiction, the
anchor, which is the point in the parametric space which lies precisely at the
middle of the support of a basis function.

3.5 Univariate and multivariate NURBS’s

According to the same principle exposed in the subsection 3.3.1, not all curves
and surfaces can be represented with piecewise-polynomials only. Using the
same procedure of Subsection 3.3.1 so, we define a B-spline curve where the
basis functions are rational functions.
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Algorithm 3.10 Algorithm for the computation of the value of the B-spline
surface derivatives in a provided point of the parametric space.

1% Compute B−sp l i ne sur face d e r i v a t i v e s in the s p e c i f i e d point
2% from order 0 to order d .
3% Input :
4% n: def ined according ly to the knot vector Xi ;
5% p : degree in d i r ec t i on x i ;
6% Xi : knot vector in d i r ec t i on x i ;
7% m: def ined according ly to the knot vector Eta ;
8% q : degree in d i r ec t i on eta ;
9% Eta : not vector in d i r ec t i on eta ;
10% P: contro l po ints wr i t ten in the format P( xi , eta , x_k ) ;
11% xi : point in d i r ec t i on x i in which the sur face i s to be determined ;
12% eta : point in d i c rec t i on eta in which the sur face i s to be determined ;
13% d : de r i v a t i v e s are to be computed up to order d .
14% Output :
15% SKL: tr id imens iona l matrix where SKL_{k , l , i } i s the i t h
16% coordinate de r i v a t i v e of S( xi , eta ) with respec t to
17% xi k times and to eta l times .
18% Nxi : returns derivsBasisFuns ( xiSpan , xi , p , d , Xi ) ;
19% Neta : returns derivsBasisFuns ( etaSpan , eta , q , d , Eta ) ;
20% spanxi : returns spanxi = findSpan (n , p , xi , Xi ) ;
21% spaneta : returns findSpan (m, q , eta , Eta ) .
22function [ SKL, Nxi , Neta , spanxi , spaneta ] = . . .
23b sp l i n eSu r fDe r i v s (n , p , Xi , m, q , Eta , P, xi , eta , d)
24% Determine the span in which the point [ xi , eta ]^T i s .
25spanxi = findSpan (n , p , xi , Xi ) ;
26spaneta = findSpan (m, q , eta , Eta ) ;
27% Determine the d e r i v a t i v e s .
28Nxi = der ivsBas i sFuns ( spanxi , xi , p , d , Xi ) ;
29Neta = der ivsBas i sFuns ( spaneta , eta , q , d , Eta ) ;
30SKL = zeros (d+1, length (P(1 , 1 , : ) ) , d+1);
31for k = 0 : d
32for l = 0 : d
33for i = 0 : length (P(1 , 1 , :))−1
34SKL(k+1, i +1, l +1) = Neta ( l +1, : ) ∗P( spanxi−p+1: spanxi +1 , . . .
35spaneta−q+1: spaneta+1, i +1) ’∗Nxi ( k+1, : ) ’ ;
36end
37end
38end
39SKL = permute (SKL, [ 1 , 3 , 2 ] ) ;
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3.5.1 NURBS basis functions

A NURBS basis function can be defined using B-spline basis functions using the
relation

Rpi (ξ) =
Np
i (ξ)wi

n∑
î=0

Np

î
(ξ)wî

, a ≤ ξ ≤ b, (3.15)

where the Np
i ’s are the B-spline basis functions already defined in (3.3) over the

knot vector

Ξ =

a, . . . , a︸ ︷︷ ︸
p+1

, ξp+1, . . . ξn, b, . . . , b︸ ︷︷ ︸
p+1

 , |Ξ| = n+ p+ 2,

and the wi’s are the weights.

Property1: This choice of the basis functions guarantees the local support prop-
erty : Rpi (ξ) = 0 if ξ /∈ [ξi, ξi+p+1).

Property2: In any given knot span [ξj , ξj+1) at most p + 1 of the Rpi are
nonzero, namely the functions Rpj−p, . . . , R

p
j .

Property3: The property of nonnegtivity states that Rpi (ξ) ≥ 0 for all i, p and
ξ.

Property4: The property of partition of unity states that
∑n
i=0R

p
j (ξ) = 1 for

all ξ ∈ [ξi, ξi+1).

Property5: Rpi (ξ) is C∞ ((ξj , ξj+1)) for all j. At a knot Rpi (ξ) is p− k times
continuously differentiable, where k is the multiplicity of the knot.

Property6: If wi = 1 for all i then Rpi (ξ) = Np
i (ξ). This means that NURBS’s

are a generalization of the B-splines.

Property7: If no interior knot is defined in the knot vector, then NURBS’s are
a generalization of Béziers.

Property8: The set of all NURBS basis functions of pth-degree Rpi (ξ), i =
0, . . . , n defined on the knot vector

Ξ =

ξ0, . . . , ξ0︸ ︷︷ ︸
s0

, ξ1, . . . , ξ1︸ ︷︷ ︸
s1

, . . . , ξk, . . . , ξk︸ ︷︷ ︸
sk


forms a basis of the space N p

Ξ of the of the piecewise-rational polynomials
of degree p with continuity Crj at ξj with rj = p − sj . It is possible to
show that the dimension of the space N p

Ξ is

dim (N p
Ξ) = k (p+ 1)−

k∑
j=0

(rj + 1).
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Algorithm 3.11 Algorithm for the evaluation of the ith NURBS basis function.

1% NURBSBasisFun computes the d e r i v a t i v e s of the i−th NURBS bas i s funct ion .
2% Input :
3% i : index of the NURBS bas i s funct ion ;
4% xi : point where to eva luate the de r i v a t i v e ;
5% n: number of contro l po ints minus 1;
6% p : degree of the NURBS bas i s funct ion ;
7% Xi : knot vector over which the NURBS bas i s funct ion has to be b u i l t ;
8% w: vector of the weights .
9% Output :
10% R: value of the de r i v a t i v e .
11function R = NURBSBasisFun( i , xi , n , p , Xi , w)
12spanXi = findSpan (n , p , xi , Xi ) ;
13i f i < spanXi−p | | i > spanXi , R = 0 ;
14else
15N = basisFuns ( spanXi , xi , p , Xi ) ;
16R = N(p+1−(spanXi−i ) ) . ∗w( i +1)./(N∗w( spanXi−p+1: spanXi +1) ’ ) ;
17end

3.5.2 Algorithm for NURBS basis functions
It is important to have an efficient way of evaluating both a NURBS basis
function and its derivative: Algorithm 3.11 and Algorithm 3.12 respectively can
be used.

In Algorithm 3.11, we simply need to compute

Rpi (ξ) =
Np
i (ξ)wi

n∑
î=0

Np

î
(ξ)wî

;

the terms Np
i (ξ)’s can be computed with a single call to basisFuns(...).

3.5.3 Algorithm for NURBS basis functions derivatives
Algorithm 3.12 computes the function ∂Rpi/∂ξ in ξ:

∂Rpi (ξ)

∂ξ
=

∂

∂ξ


Np
i (ξ)wi

n∑
î=0

Np

î
(ξ)wî

 .

By the linearity of the derivative, we can say

∂Rpi (ξ)

∂ξ
=

wi
∂Np

i (ξ)

∂ξ
·W (ξ)−Np

i (ξ)wi ·
n∑
î=0

∂Np

î
(ξ)

∂ξ
wî

(W (ξ))
2 ,

where

W (ξ) =

n∑
î=0

Np

î
(ξ)wî.

The Np
i ’s and the ∂Npi/∂ξ’s can all be computed with a single call to, respectively,

basisFuns(...) and derivsBasisFuns(...) (according to our definition of
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Algorithm 3.12 Algorithm for the evaluation of the derivative of a NURBS
basis function.

1% derivsNURBSBasisFun computes the value of the de r i v a t i v e of
2% the i−th NURBS bas i s funct ion in the point x i .
3% Input :
4% i : index of the NURBS bas i s funct ion to compute ;
5% xi : point in which to compute the NURBS bas i s funct ion ;
6% p : degree of the NURBS bas i s funct ion ;
7% Xi : knot vector over which the NURBS bas i s funct ion have to be
8% computed .
9% w: vector containing the weights .
10% Output :
11% R: value of the i−th NURBS bas i s funct ion computed in x i .
12function R = derivsNURBSBasisFuns ( i , xi , p , Xi , w)
13n = length (Xi)−p−2;
14spanXi = findSpan (n , p , xi , Xi ) ;
15% Computation of a l l the nonvanishing B−sp l i ne bas i s funct ions in x i .
16Nips = basisFuns ( spanXi , xi , p , Xi ) ;
17% Computation of the value for the denominator of the NURBS bas i s funct ion .
18W = Nips∗w( spanXi−p+1: spanXi +1) ’ ;
19% Compitatio of the der i va i v e s of the B−sp l i ne bas i s funct ions .
20dNips = der ivsBas i sFuns ( spanXi , xi , p , 1 , Xi ) ;
21% Linear combinatio of the d e r i v a t i v e s .
22Cw = w( spanXi−p+1: spanXi+1)∗dNips (2 , : ) ’ ;
23% Values of the i−th bas i s funct ion and r e l a t i v e de r i v a t i v e .
24Nip = basisFun (p , n+p+1, Xi , i , x i ) ;
25dNip = der ivsBas i sFun (p , Xi , i , xi , 1 ) ;
26% Final r e s u l t .
27R = (w( i +1).∗dNip (1+1).∗W − Nip . ∗w( i +1).∗Cw) . / (W.^2 ) ;

derivsBasisFuns(...), a simple call to this function would be sufficient, as it
computes the derivatives of degree k = 0 as well).

Example 3.14. An example of derivatives of NURBS basis functions can be
seen in Figure 3.15. Cubic NURBS basis functions are plotted over the knot
vector Ξ = {0, 0, 0, 0, 1, 4, 6, 8, 8, 8, 8} with the weights w = [1, 1, 1, 3, 1, 1, 1]. In
Figure 3.15b the respective derivatives are represented.

3.5.4 Univariate NURBS
As a result, a pth-degree NURBS (Non Uniform Rational B-spline) curve (or
univariate NURBS) is

C (ξ) =

n∑
i=0

Np
i (ξ)wiP i

n∑
i=0

Np
i (ξ)wi

, a ≤ ξ ≤ b, (3.16)

where the P i’s are the control points forming the control polygon, which (3.16)
can be rewritten

C (ξ) =

n∑
i=0

Rpi (ξ)P i, a ≤ ξ ≤ b, (3.17)

It is possible moreover to use homogeneous coordinates to get a better repre-
sentation of the NURBS:

Cw (ξ) =

n∑
i=0

Np
i (ξ)Pwi

i , a ≤ ξ ≤ b. (3.18)
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Figure 3.15: Representation of cubic NURBS basis functions are plotted over the
knot vector Ξ = {0, 0, 0, 0, 1, 4, 6, 8, 8, 8, 8} with the weightsw = [1, 1, 1, 3, 1, 1, 1]
in (a) and the respective derivatives in (b).

The properties of the NURBS curves are listed below.

Property1: If n = p and Ξ = {a, . . . , a, b, . . . , b} then C (ξ) is a Bézier curve.

Property2: Endpoint interpolation: C (a) = P 0 and C (b) = P n.

Property3: Variation diminishing property: no plane has more intersections
with the curve than with the control polygon.

Example 3.15. In Figure 3.16 a circle has been built using a NURBS curve.
The NURBS is drawn using the data reported in Table 3.3.

i P i wi

0 [1, 0]
T

1

1 [1, 1]
T 1/

√
2

2 [0, 1]
T

1

3 [−1, 1]
T 1/

√
2

4 [−1, 0]
T

1

5 [−1,−1]
T 1/

√
2

6 [0,−1]
T

1

7 [1,−1]
T 1/

√
2

8 [1, 0]
T

1

Table 3.3: Data used for the construction of the NURBS circle of Figure 3.16.
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Figure 3.16: Representation of a unit circle with its control points in (a) and of
the NURBS basis functions used to build it in (b).

3.5.5 Algorithm for NURBS curves

Algorithms 3.13 and 3.14 can be used to evaluate a NURBS curve and its deriva-
tive. Algorithm 3.13 is a straightforward application of the definition of uni-
variate NURBS of Equation (3.16).

3.5.6 Algorithm for NURBS curves derivatives

It is possible to prove (see [24]) that the kth derivative of a NURBS curve
C(k) (ξ) can be computed using the equation

C(k) (ξ) =

A(k) (ξ)−
k∑
i=1

(
k

i

)
w(i) (ξ)C(k−i) (ξ)

w (ξ)
,

where A(k) (ξ) is the vector-valued function which contains the first three com-
ponents of the kth derivative of Cw (ξ) and w(i) (ξ) is the ith derivative of the
fourth component of Cw (ξ) (both can be computed with Equation (3.10) and
Algorithm 3.8) .

3.5.7 Multivariate tensor-product NURBS

Similarly, the form of a NURBS surface is

S (ξ, η) =

n∑
i=0

m∑
j=0

Np
i (ξ)Nq

j (η)wi,jP i,j

n∑
i=0

m∑
j=0

Np
i (ξ)Nq

j (η)wi,j

, a ≤ ξ ≤ b
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Algorithm 3.13 Algorithm for the evaluation of a NURBS curve.

1% NURBSCurvePoint eva lua tes a NURBS curve in the s p e c i f i e d
2% point x i .
3% Input :
4% n: def ined according ly to the knot vector ;
5% p : degree of the NURBS curve ;
6% Xi : knot vector on which the NURBS i s def ined ;
7% Pw: weighted contro l po ints wr i t ten in rows ;
8% xi : point in which the vurve has to be eva luated .
9% Output :
10% C: value of the curve in the point x i .
11function C = NURBSCurvePoint (n , p , Xi , Pw, x i )
12span = findSpan (n , p , xi , Xi ) ;
13N = basisFuns ( span , xi , p , Xi ) ;
14d = length (Pw(1 , : ) ) ;
15Cw = zeros (1 , d ) ;
16for j = 0 : p
17Cw( 1 : d) = Cw( 1 : d) + N( j +1).∗Pw( span−p+j +1, 1 : d ) ;
18end
19C( 1 : d) = Cw( 1 : d ) . /Cw(d ) ;

Algorithm 3.14 Algorithm for the evaluation of the derivatives of a NURBS
curve.

1% NURBSCurveDerivs computes a l l the k d e r i v a t i v e s 0 <= k <= d of a NURBS
2% curve .
3% Input :
4% n : number o f the con t r o l po in t s minus one ;
5% p : degree o f the curve ;
6% Xi : knot vec to r over which the curve has to be bu i l t ;
7% Pw: weighted con t r o l po in t s ;
8% x i : po int where to eva luate the d e r i v a t i v e ;
9% d : maximum degree o f the d e r i v a t i v e to c a l c u l a t e .
10% Output :
11% CK: CK(k ) i s the k−th d e r i v a t i v e o f the curve f o r 0 <= k <= d .
12func t i on CK = NURBSCurveDerivs (n , p , Xi , Pw, xi , d )
13Aders = bspl ineCurveDer ivs (n , p , Xi , Pw, xi , d ) ;
14wders = Aders ( : , 3 ) ;
15Aders = Aders ( : , 1 : 2 ) ;
16CK(1 , : ) = Aders (1 , 1 : 2 ) ;
17f o r k = 0 : d
18v = Aders (k+1, : ) ;
19f o r i = 1 : k
20v = v−nchoosek (k , i ) . ∗ wders ( i +1).∗CK(k−i +1, : ) ;
21end
22CK(k+1, : ) = v . / wders (0+1);
23end
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where the P i,j ’s are the control points forming the control net, the Np
i ’s and

the Nq
j ’s are the B-spline basis functions already defined in (3.3) over the knot

vectors

Ξ =

a1, . . . , a1︸ ︷︷ ︸
p+1

, ξp+1, . . . ξn, b1, . . . , b1︸ ︷︷ ︸
p+1

 , |Ξ| = n+ p+ 2,

H =

a2, . . . , a2︸ ︷︷ ︸
q+1

, ηq+1, . . . ηm, b2, . . . , b2︸ ︷︷ ︸
q+1

 , |H| = m+ q + 2,

where the wi,j ’s are the weights. As already done, it is possible to use the
rational basis functions

Rp,qi,j (ξ, η) =
Np
i (ξ)Nq

j (η)wi,j
n∑
î=0

m∑
ĵ=0

Np

î
(ξ)Nq

ĵ
(η)wî,ĵ

, a ≤ ξ ≤ b, (3.19)

to give another definition of a NURBS surface

S (ξ, η) =

n∑
i=0

m∑
j=0

Rp,qi,j (ξ, η)P i,j , a ≤ ξ ≤ b.

Again, homogeneous coordinates con be employed to give a more manageable
description of a NURBS surface:

Sw (ξ, η) =

n∑
i=0

m∑
j=0

Np
i (ξ)Nq

j (η)P
wi,j
i,j , a ≤ ξ ≤ b. (3.20)

The following are the properties of the bivariate tensor-product NURBS
basis functions.

Property1: This choice of the basis functions guarantees the local support prop-
erty : Rp,qi,j (ξ, η) = 0 if (ξ, η) /∈ [ξi, ξi+p+1)× [ηj , ηj+q+1).

Property2: In any given rectangle [ξi0 , ξi0+1)×[ηj0 , ηj0+1) at most (p+ 1) (q + 1)
of the Rp,qi,j (ξ, η) are nonzero, namely the functions Rp,qi,j (ξ, η), for i0−p ≤
i ≤ i0 and j0 − q ≤ j ≤ j0.

Property3: The property of nonnegativity states that Rp,qi,j (ξ, η) ≥ 0 for all i,
j, p, q, ξ and η.

Property4: The property of partition of unity states that
∑n
i=0

∑m
j=0R

p,q
i,j (ξ, η) =

1 for all (ξ, η) ∈ [a0, b0]× [a1, b1].

Property5: Rp,qi,j (ξ, η) is C∞ ((ξi0 , ξi0+1)× (ηj0 , ηj0+1)) for all i, j, i0 and j0.
At a ξ (η) knot it is p−k (q−k) times differentiable in the ξ (η) direction,
where k is the multiplicity of the knot.

Property6: If all wi,j = a and a 6= 0 then Rp,qi,j (ξ, η) = Np,q
i,j (ξ, η).
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i P i,1 P i,2 P i,3 wi,1 wi,2 wi,3

1 [−1, 0]
T

[−2.5, 0]
T

[−4, 0]
T

1 1 1

2
[
−1,
√

2− 1
]T

[−2.5, 0.75]
T

[−4, 4]
T (1+1/

√
2)/2 1 1

3
[
0−
√

2, 1
]T

[−0.75, 2.5]
T

[−4, 4]
T (1+1/

√
2)/2 1 1

4 [0, 1]
T

[0, 2.5]
T

[0, 4]
T

1 1 1

Table 3.4: Data used for the construction of the NURBS surface of Figure 3.18.

Property7: The set of all bivariate tensor-product B-spline basis functions of
pth-degree in the ξ direction and of qth-degree in the η direction Rp,qi,j (ξ, η),
i = 0, . . . , n and j = 0, . . . ,m defined on the knot vectors

Ξ =

ξ0, . . . , ξ0︸ ︷︷ ︸
sξ,0

, ξ1, . . . , ξ1︸ ︷︷ ︸
sξ,1

, . . . , ξk, . . . , ξk︸ ︷︷ ︸
sξ,k



H =

η0, . . . , η0︸ ︷︷ ︸
sη,0

, η1, . . . , η1︸ ︷︷ ︸
sη,1

, . . . , ηl, . . . , ηl︸ ︷︷ ︸
sη,l


forms a basis of the space N p,q

Ξ,H of the piecewise-rational polynomials of
degree p in the ξ direction and degree q in the η direction, with continuity
Crξ,j in direction ξ at ξj with rξ,j = p − sξ,j and with continuity Crη,j
in direction η at ηj with rη,j = q − sη,j . It is possible to show that the
dimension of the space N p,q

Ξ,H is

dim
(
N p,q

Ξ,H

)
=

k (p+ 1)−
k∑
j=0

(rξ,j + 1)

l (q + 1)−
l∑

j=0

(rη,j + 1)

.
Example 3.16. Figure 3.17 shows the bivariate tensor-product NURBS basis
functions built over the knot vectors Ξ = H = {0, 0, 0, 0.5, 1, 1, 1} with p = q =
2.

Example 3.17. Figure 3.18 shows a surface drawn with a NURBS surface.
The hole drawn in corner is quarter of a cirle and it requires a NURBS to be
drawn. The data necessary to draw the surface is reported in Table 3.4.

Some important properties of the B-spline surfaces are listed below.

Property1: If n = p, m = q, Ξ = [a, . . . , a, b, . . . , b] and H = [a, . . . , a, b, . . . , b]
then S (ξ, η) is a Bézier surface.

Property2: Endpoint interpolation: the surface interpolates the four corner
control points S (a1, a2) = P 0,0, S (b1, a2) = P n,0, S (a1, b2) = P 0,m and
S (b1, b2) = P n,m.

Using the tensor product, a solid can be expressed using three sets of basis
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Figure 3.18: Representation of a square surface with a hole in a corner.

functions

S (ξ, η, ζ) =

n∑
i=0

m∑
j=0

l∑
k=0

Np
i (ξ)Nq

j (η)Nr
k (ζ)wi,j,kP i,j,k

n∑
i=0

m∑
j=0

l∑
k=0

Np
i (ξ)Nq

j (η)Nr
k (ζ)wi,j,k

, a ≤ ξ ≤ b. (3.21)

where the P i,j,k’s are the control points of the solid, the N
p
i ’s, the N

q
j ’s and the

Nr
k ’s are the B-spline basis functions defined in (3.3) over the knot vectors

Ξ =

a1, . . . , a1︸ ︷︷ ︸
p+1

, ξp+1, . . . ξn, b1, . . . , b1︸ ︷︷ ︸
p+1

 , |Ξ| = n+ p+ 2,

H =

a2, . . . , a2︸ ︷︷ ︸
q+1

, ηq+1, . . . ηm, b2, . . . , b2︸ ︷︷ ︸
q+1

 , |H| = m+ q + 2,

Z =

a3, . . . , a3︸ ︷︷ ︸
r+1

, ζr+1, . . . ζl, b3, . . . , b3︸ ︷︷ ︸
r+1

 , |Z| = l + r + 2.
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Algorithm 3.15 Algorithm for evaluating the value of a NURBS surface in
(ξ, η).

1% NURBSSurfPoint eva lua tes a NURBS surface on a point ( xi , eta )
2% of the domain .
3% Input :
4% n: def ined acording ly to the knot vector Xi ;
5% p : degree in the f i r s t d i r ec t i on ;
6% Xi : knot vector in the f i r s t d i r ec t i on ;
7% m: def ined according ly to the knot vector Eta ;
8% q : degree in the second d i rec t i on ;
9% Eta : knot vector in the second d i r ec t i on ;
10% Pw: weighted points wr i t ten in the format P( xi , x_k , eta ) ;
11% xi : coordinate in the f i r s t d i r ec t i on on which the
12% surface i s being eva luated ;
13% eta : coordinate in the second d i r ec t i on on which the
14% surface i s being eva luated .
15% Output :
16% S: value of the sur face in the point ( xi , eta ) .
17function [ S ] = NURBSSurfPoint (n , p , Xi , m, q , Eta , Pw, xi , eta )
18xiSpan = findSpan (n , p , xi , Xi ) ;
19etaSpan = findSpan (m, q , eta , Eta ) ;
20Nxi = basisFuns ( xiSpan , xi , p , Xi ) ;
21Neta = basisFuns ( etaSpan , eta , q , Eta ) ;
22d = length (Pw(1 , 1 , : ) ) ;
23Sw(d) = 0 ;
24for i = 1 : d
25Sw( i ) = Nxi∗Pw( xiSpan−p+1: xiSpan+1, etaSpan−q+1: etaSpan+1, i )∗Neta ’ ;
26end
27S = Sw( 1 : d−1)./Sw(d ) ;

and the wi,j,k’s are the weights. Defining the B-spline rational basis functions

Rp,q,li,j,k (ξ, η, ζ) =
Np
i (ξ)Nq

j (η)N l
k (ζ)wi,j,k

n∑
î=0

m∑
ĵ=0

l∑
k̂=0

Np

î
(ξ)Nq

ĵ
(η)N l

k̂
(ζ)wî,ĵ,k̂

, a ≤ ξ ≤ b,

(3.21) can be written in a simpler form:

S (ξ, η, ζ) =

n∑
i=0

m∑
j=0

l∑
k=0

Rp,q,li,j,k (ξ, η, ζ)P i,j,k, a ≤ ξ ≤ b.

As usual, the usage of homogeneous coordinates reduces (3.21) to

Sw (ξ, η, ζ) =

n∑
i=0

m∑
j=0

l∑
k=0

Np
i (ξ)Nq

j (η)N l
k (ζ)P

wi,j,k
i,j,k , a ≤ ξ ≤ b.

3.5.8 Algorithm for NURBS surfaces

Equation (3.20) is used in Algorithm 3.15 to determine efficiently the value of
the surface in (ξ, η).

3.5.9 Algorithm for NURBS surfaces derivatives

It is possible to use Algorithm 3.16 to evaluate the derivative of a NURBS
surface. It uses Algorithm 3.10 and Equations (3.14) to evaluate the derivatives
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Algorithm 3.16 Algorithm for the evaluation of the derivative of a NURBS
surface.

1% NURBSSurfDerivs eva lua tes the de r i v a t i v e s of the NURBS surface S( xi , eta )
2% of order up to 0<=k+l<=d , k times with respec t to x i and l times with
3% respec t to eta .
4% Input :
5% n: def ined according ly to the knot vector Xi ;
6% p : degree in d i r ec t i on x i ;
7% Xi : knot vector in d i r ec t i on Xi ;
8% m: def ined accord ing l to the knot vector Eta ;
9% q : degree in d i r ec t i on eta ;
10% Eta : knot vector in d i r ec t i on eta ;
11% Pw: weighted contro l po ints ;
12% xi : va lue in which to eva luate the sur face in the x i d i r ec t i on ;
13% eta : va lue in which to eva luate the sur face in the eta d i r ec t i on ;
14% Output :
15% SKL: de r i v a t i v e s of the NURBS surface S( xi , eta )
16% of order up to 0<=k+l<=d , k times with respec t to x i and l times
17% with respec t to eta . SKL(k , l ) contains the d e r i v a t i v e s of the
18% surface d i f f e r e n t i a t e d k times with respec t to x i and l times with
19% respec t to eta .
20function [SKL] = NURBSSurfDerivs (n , p , Xi , m, q , Eta , Pw, xi , eta , d)
21Aders = bsp l i n eSu r fDe r i v s (n , p , Xi , m, q , Eta , Pw, xi , eta , d ) ;
22wders = Aders ( : , : , end ) ;
23Aders = Aders ( : , : , 1 :end−1);
24Bders = permute (Aders , [ 1 , 3 , 2 ] ) ;
25SKL = zeros (d+1, d+1);
26for k = 0 : d
27for l = 0 : d−k
28v = Bders (k+1, : , l +1);
29for j = 1 : l
30v = v−nchoosek ( l , j ) . ∗ wders (0+1 , j +1).∗SKL(k+1, : , l−j +1);
31end
32for i = 1 : k
33v = v−nchoosek (k , i ) . ∗ wders ( i +1, 0+1).∗SKL(k−i +1, : , l +1);
34v2 = 0 ;
35for j = 1 : l
36v2 = v2+nchoosek ( l , j ) . ∗ wders ( i +1, j + 1 ) . ∗ . . .
37SKL(k−i +1, : , l−j +1);
38end
39v = v−nchoosek (k , i ) . ∗ v2 ;
40end
41SKL(k+1, : , l +1) = v ./ wders (0+1 , 0+1);
42end
43end
44SKL = permute (SKL, [ 1 , 3 , 2 ] ) ;

of Sw (ξ, η) (Sw (ξ, η) can, as said, be expressed by a B-spline curve where
instead of points with three components, four components weighted points are
used). Starting from Sw (ξ, η) we can compute the derivatives of the NURBS
surface S (ξ, η) with the equation

∂k+lS (ξ, η)

∂ξk∂ηl
=

1

w

(
∂k+lA (ξ, η)

∂ξk∂ηl
−

k∑
i=1

(
k

i

)
∂iw (ξ, η)

∂ξi
∂k−i+lS

∂ξk−i∂ηl
+

−
l∑

j=1

(
l

j

)
∂jw

∂ηj
∂k+l−jS (ξ, η)

∂ξk∂ηl−j
−

k∑
i=1

(
k

i

) l∑
j=1

(
l

j

)
∂i+jw (ξ, η)

∂ξi∂ηj
∂k−i+l−jS (ξ, η)

∂ξk−i∂ηl−j

 .
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3.6 T-splines

An interesting technology from the point of view of both CAD and Isogeometric
Analysis is the T-spline technology, initially introduced by Sederberg in [28]. T-
splines allows:

1. add details only where necessary;

2. maintain NURBS compatibility;

3. allow watertight placement of patches;

4. reduce the total number of control points.

3.6.1 T-mesh and basis functions

The definition of a T-spline begins from the index space of a T-mesh, where
knots are defined as before, and are placed equidistantly on a rectangle. In this
case, however, T-junctions are allowed: T-junctions are vertices formed by the
intersection of three edges. This is not possible in NURBS and B-splines.

Let’s consider a B-spline basis function Np
α: according to the properties al-

ready explained, it’s support comprise only the knots ξiα to ξiα+p+1. These knots
form the local knot vector Ξiα, where i is the direction, and the corresponding
anchor is sα.

If p is odd, for each index space direction, we create a local knot vector Ξ1
α

and Ξ2
α, which are empty at the beginning. Next, we place ξ1

i in Ξ1
α and ξ2

j in Ξ2
α

supposing sα = {i, j}. Next, we travel horizontally on one side of the anchor,
and for each orthogonal edge k encountered, we add ξ1

k in Ξ1
α until we have

added a total of p+1/2 knots. The same has to be done travelling horizontally
on the other side of the anchor until we’ve added a total of p+1/2 knots. On
both sides, if less than p+1/2 knots can be added as no more orthogonal edges
are found, we repeat the last one until that value is reached. The same process
is repeated in the other direction.

In case p is even, anchors are located inside an element and not at intersec-
tions. So, the same process is repeated, without adding the first knot to the
knot vector and we insert a total of p/2 + 1 knots instead of p+1/2.

For a given T-mesh and degree p, let A ⊂ Z2 be the index set containing
every α for which sα is an anchor. Using the Ξ1

α’s and the Ξ2
α’s we are able to

define B-spline basis functions Np
α (ξ) defined in the parametric space. For each

α ∈ A we define a control point P α ∈ Rd (d can be chosen accordingly to the
dimension of the physical space) and a weight wα to construct a set of T-spline
blending functions

Rα (ξ) =
wαN

p
α (ξ)∑

β∈A wβN
p
β (ξ)

,

for which the partition of unity is still valid.
The same definitions and procedures can be generalized almost straightfor-

wardly to three-dimensional spaces to create T-spline solids.
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Figure 3.19: Partial isoparms and T-points.

3.6.2 Advantages
T-Splines surfaces can contain areas with differing levels of detail (see Figure
3.19). Control points may be added only where needed so that a typical T-Spline
surfaces will have up to 50% fewer control points than the identical equivalent
set of NURBS surfaces. In other words, T-Splines are similar to NURBS, with
the difference that you can have partial isoparms (isocurves or isosurfaces). A
main difference between T-Splines and NURBS is the existence of T-points:
vertices where on one side, there is an isoparm, and on the other side, there
isn’t. The surface is always smooth (C2) at a T-point. NURBS’s don’t allow
T-points.

There are various types of surfaces for which it is necessary to use multi-
ple NURBS surfaces (polysurfaces) to be drawn: extrusions, holes, and other
unique features are easy to create in a T-Spline surface. This is another dif-
ference between T-Splines and NURBS. NURBS require multiple surfaces, or a
polysurface, for such objects. T-Splines can accommodate these features in a
single surface, by using a special point called a star point (see Figure 3.20).

T-splines are a generalization of NURBS’s, so there is a complete back-
compatibility (see Figure 3.21 and 3.22), which is an important feature when
T-splines are to be introduced in a industrial environment, where most models
are NURBS-based.
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Figure 3.20: Example of a single T-spline surface designing a complex object
with holes. NURBS would require multiple surfaces or polysurfaces.

Figure 3.21: On the left car model designed using T-splines, on the right the
same exact model is converted to a NURBS-based model.
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Figure 3.22: Comparison of the number of control points in a NURBS-based
and in a T-spline-based model.

University of Padua Faculty of Engineering



Chapter 4

Isogeometric Analysis

Recently, a new proposal has been developed and published in [3, 18]. The
Isogeometric Analysis is a generalization of the Finite Element Method: while
the latter employs only piecewise-polynomials for both the description of the
geometry and the approximation of the solution, the former replaces them with
different elements.

The starting point of the analysis of the benefits of the two is the analy-
sis of the engineering design industry. The design description of objects and
structures is embodied in Computer Aided Design systems (CAD), which has
to be translated to an analysis-suitable geometry for mesh generation and use
in Finite Element Analysis. This translation is, however, difficult, and turns
out to need a considerable part of the overall process of analysis. After years
of usage of Finite Element Analysis, it can be stated that design and analysis
are not separable endeavors. However, many attempts at integrating CAD and
FEM have failed.

The translation of the CAD model to a FEM suitable model is not a trivial
task, and the creation of a mesh implies the introduction of a relevant approx-
imation to the exact CAD model, which can result in analytical errors. The
possibility of mesh refinement is of course available, as it can be seen from
Chapter 2, but this requires a continuous and automatic communication with
the CAD model, which is often not possible in the industry environment. Taking
advantage of parallelism in computing the transformation of the CAD model is
not simple as it is not known how to manage concurrency in mesh generation.
A possible way of overcoming to these problems with Finite Element Analysis
is to redesign the entire process of analysis, building one model only where it
is possible to design and analyze. This is of course a huge change and requires
a new analysis model based on the exact CAD representation. These are the
concepts and reasons which lie behind Isogeometric Analysis, which is based on
the same geometry representation employed in CAD models. The most used
technology in CAD design is NURBS, but it would be possible to adapt the
model to many other technologies, like T-splines.
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Finite element analysis Shared concepts Isogeometric analysis
Nodal points Control points

Nodal variables Control variables
Mesh Knots

Basis interpolates
nodal points and

variables

Basis does not
interpolate control
points and variables

Approximate geometry Exact geometry
Polynomial basis CAD basis
Gibbs phenomena Variation diminishing

Subdomains Patches
Compact support
Partition of unity

Isoparametric concept

Table 4.1: Comparison of the elements of FEM and Isogeometric Analysis.

4.1 FEM and Isogeometric analysis

4.1.1 General framework
Let’s summarize again the model we’re analyzing, already presented in Chapters
1 and 2. Consider again a second order elliptic PDE on the domain Ω with
Lipschitz-continuous boundary Γ = ΓD ∪ ΓN . The equation we would like to
solve for u can be written as in Equation (1.10).

From the strong formulation, the weak formulation can be derived as in
Equation (1.11).

The Galerkin projection replaces the infinite-dimensional space V by the
finite-dimensional subspace Vh spanned byNh basis functions ϕi, i = 0, 1, . . . , Nh−
1. This way, the approximate solution must satisfy

a (υh, ϕi) = l (ϕi) , ∀ϕi ∈ Vh.

Being the space Vh linear, it is possible to write υh as a linear combination
υh =

∑Nh−1
i=0 ῡiϕi, so that we obtain the linear system Sh · Ūh = F h where

Sh = [a (ϕj , ϕi)]
Nh−1
i,j=0 and F h = [l (ϕi)]

Nh−1
i=0 .

4.1.2 Isoparametric FEM
A possible choice for the basis functions, as already showed, are the piecewise-
polynomials. When this is the choice, and the space of the weighting functions
is equal to the set of the trial solutions, the Galerkin method is named FEM.
The isoparametric concept is invoked and the boundaries of the nodal finite
elements are approximated using the same basis functions used in the approx-
imation of the solution. The domain is approximated and divided in nonover-
lapping elements over which the basis functions are defined. Integrations are
then performed over the reference element, where adequate integration nodes
are defined.

As already illustrated in Chapter 2, possible refinements for the FEM ap-
proach are h-refinement, which refines the mesh over the domain, p-refinement,
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which elevates the degree of the nodal basis functions and hp-refinement, which
both elevates the degree and refines the mesh.

4.1.3 Isogeometric approach

Another possible choice for the shape functions are the CAD basis functions,
such as B-splines, NURBS’s, T-splines etc... (the important elements can be
found in Chapter 3).

As already pointed, Isogeometric Analysis is an attempt at merging the en-
gineering design and analysis: this is why the first step of Isogeometric Analysis
is the description of the geometry of the problem through an “exact” descrip-
tion, which is the same used in the CAD model. According to the isoparametric
concept, assuming B-splines are used to represent the geometry with a CAD
software, the same B-splines are used in the analysis, thus allowing the use of
a geometry which is exactly the same as that of the CAD model. One concept
has to be remarked: it is usually not possible to use directly the CAD model
in the analysis. The CAD description usually represents the boundaries of the
geometry, whereas the complete computational domain has to be included in
the representation for the analysis, as solution fields are to be computed. This
means that, for two-dimensional problems, the analysis needs a surface, and not
the only boundary; for a three-dimensional problem, the entire solid is needed,
not only the surfaces of the solid.

The basis functions are defined over what we call the parametric space, which
is typically the unit segment [0, 1] in one-dimensional problems, the unit interval
[0, 1]

2 in two-dimensional problems and the unit cube [0, 1]
3 in three-dimensional

problems. It would be very comfortable to define the shape functions used in
the analysis using the same CAD basis functions, but defined on the physical
space. This is, indeed, possible by using a geometrical map x̃ : Ω̃ = [0, 1]

d → Ω,
where d is the dimension of the CAD basis functions used in the description of
the geometry. Assuming B-splines are used, for instance, x̃ (ξ) is an element of
the B-spline space SpΞ1 ,...,pΞd

Ξ1,...,Ξd
; so, according to the definitions of Section 3.4, in

the one-dimensional case we may write the geometrical map as

x̃ (ξ) =

n∑
i=0

Ñp
i (ξ)P i ∈ SpΞ, ξ ∈ Ω̃ = [0, 1] ⊂ R,

where the B-spline paraphernalia is defined as usual: the {P i}ni=0’s are the
control points, the {wi}ni=0’s are the corresponding weights and the B-spline
basis functions Ñp

i (ξ)’s used when expressing the R̃pi (ξ)’s are defined over the
knot vector

Ξ = {ξ0 = 0, ξ2, . . . , ξn+p, ξn+p+1 = 1} .

Remark 4.1. From now on, the CAD basis functions are going to be defined
with a overlying tilde to attain some kind of correlation in notation with the
shape functions defined on the reference domain of Chapter 2. When the CAD
basis functions are written without the tilde, they denote the definition in the
physical space.

According to the definitions of Section 3.4, in the two-dimensional case we
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have the geometrical map

x̃ (ξ, η) =

n∑
i=0

m∑
j=0

Ñp,q
i,j (ξ, η)P i,j ∈ Sp,qΞ,H , ξ = [ξ, η]

T ∈ Ω̃ = [0, 1]× [0, 1] ⊂ R2,

where n+ 1 and m+ 1 are the numbers of control points in the two directions
of the control net and the Np,q

i,j (ξ, η)’s are the B-spline basis functions. The B-
spline paraphernalia is defined as usual: the {P i,j}n,mi,j=0’s are the control points
the B-spline basis functions Np

i (ξ)’s and Nq
j (η)’s are defined over the knot

vectors
Ξ = {ξ0 = 0, ξ1, . . . , ξn+p, ξn+p+1 = 1} ,

H = {η0 = 0, η1, . . . , ηm+q, ηm+q+1 = 1} .

With these tools in hand, we can define the B-spline basis functions in the
physical space by using the geometrical map and their definition in the para-
metric space (which is simple to compute)

Np,q
i,j (x) = Np,q

i,j (x, y) = Np,q
i,j (x̃ (ξ, η)) = Ñp,q

i,j (ξ, η) = Ñp,q
i,j (ξ) ,

and the solution fields can be written according to the isoparametric concept as

υh (ξ) =

n∑
i=0

m∑
j=0

Ñp
i (ξ) Ñq

j (η) ῡi,j .

The same concepts can be applied when using the NURBS basis functions
to define the geometry. The map, in the two-dimensional case is, then:

x̃ (ξ, η) =

n∑
i=0

m∑
j=0

R̃p,qi,j (ξ, η)P i,j ∈ N p,q
Ξ,H,w, ξ = [ξ, η]

T ∈ Ω̃ = [0, 1]× [0, 1] ⊂ R2.

Example 4.2. Suppose we want to map the parametric space Ω̃ = [0, 1] to
the space Ω = [x0 = −3, x1 = 5]. Suppose moreover that the design phase has
developed a model which uses the knot vector Ξ = [0, 0, 1, 1], with p = 1. We
can derive the B-spline basis functions of degree 0

N0
0 (ξ) =

{
1, 0 ≤ ξ < 0

0, otherwise
= 0,

N0
1 (ξ) =

{
1, 0 ≤ ξ < 1

0, otherwise
,

N0
2 (ξ) =

{
1, 1 ≤ ξ < 1

0, otherwise
= 0.

and then we can build recursively the B-spline basis functions of degree 1

N1
0 (ξ) =

ξ − 0

0− 0
N0

0 (ξ) +
1− ξ
1− 0

N0
1 (ξ) =

{
1− ξ, 0 ≤ ξ < 1

0, otherwise
,

N1
1 (ξ) =

ξ − 0

1− 0
N0

1 (ξ) +
1− ξ
1− 0

N0
2 (ξ) =

{
ξ, 0 ≤ ξ < 1

0, otherwise
.
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The B-spline basis functions can be used to build the NURBS basis functions
(in case the initial model used NURBS’s) which are the shape functions defined
on the parametric space (assuming all weights equal to 1 we get the B-spline
basis functions):

R1
0 (ξ) =

N1
0

1∑
î=0

N1
î

(ξ)

=

{
1− ξ, 0 ≤ ξ < 1

0, otherwise
,

R1
0 (ξ) =

N1
0

1∑
î=0

N1
î

(ξ)

=

{
ξ, 0 ≤ ξ < 1

0, otherwise
.

We can finally write the geometrical map x̃ : Ω̃→ Ω

x̃ (ξ) = N1
0 (ξ)x0 +N1

1 (ξ)x1,

or using the NURBS basis functions

x̃ (ξ) = R1
0 (ξ)x0 +R1

1 (ξ)x1.

With the geometrical map it is possible to map points from the parametric
space to the physical space, and it is possible to define the shape functions on
the physical space by using the definitions we already gave in the parametric
space. Suppose we want to find the correspondent x̂ of the point ξ̂ = 1/2, it is
sufficient to use the geometrical map this way:

x̂ = x̃
(
ξ̂
)

= R1
0

(
ξ̂
)
· x0 +R1

1

(
ξ̂
)
· x1 = −3 · (1− 1/2) + 5 · (1/2) = 1.

The definition of the shape functions in the physical space can be found by
composing the Rpi (ξ)’s with the inverse of the map

x̃ (ξ) = x0 − ξ (x0 − x1) ,

which is
ξ (x̃) =

x0 − x̃
x0 − x1

.

The composition yields to

R1
0 (x) = R1

0 (ξ) ◦ ξ (x) =
x− x1

x0 − x1
,

R1
1 (x) = R1

1 (ξ) ◦ ξ (x) =
x0 − x
x0 − x1

.

It is simple to see that these are exactly the roof functions used in linear
FEM.

Isogeometric Analysis offers, just like FEM, the possibility for h-refinement,
by knot insertion (see 4.5.1), p-refinement, by degree elevation (see 4.5.2), hp-
refinement and ph-refinement, which is a new possibility not offered by classical
FEM.
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4.2 One-dimensional problems

The first step in the resolution of a one-dimensional problem defined on the
domain Ω = (a, b), is the presence of the CAD model of the geometry which
comprise a set of n + 1 control points P i, i = 0, . . . , n, a set of n + 1 weights
wi, i = 0, . . . , n, and a knot vector

Ξ =

0, . . . , 0︸ ︷︷ ︸
p+1

, ξp+1, . . . ξn, 1, . . . , 1︸ ︷︷ ︸
p+1

 , |Ξ| = n+ p+ 2,

where p indicates the degree of the NURBS curve (suppose we’re working with a
NURBS model, but the same considerations can be applied to B-spline models).

Starting from the weak formulation for a one-dimensional problem, which is
the same written in a more general form in (1.13):

a (υ, ϕ) = l (ϕ) , ∀ϕ ∈ H1 (Ω)

with

a (υ, ϕ) =

ˆ
Ω

(a1υ
′ · ϕ′ + a0υϕ) dx

l (ϕ) =

ˆ
Ω

(fϕ− a1γ
′ · ϕ′ − a0γϕ) dx+

[
a1 (υ + γ)

′
ϕ
]b
a

equipped with the boundary conditions

υ = 0, ∀x ∈ ΓD

(υ + γ)
′

= gN , ∀x ∈ ΓN

where u = υ + γ, a sequence of steps is needed to get an approximation.

Knot vector (mesh) In the Isogeometric Analysis, the mesh is represented
by the knot vector Ξ.

Application of the Galerkin method The Galerkin method remains al-
most unchanged: it is possible to express the unknown function υ as a linear
combination of the basis functions of the space

span {Rpi (x) , a ≤ x ≤ b, i = 0, . . . , n|i ∈ G\GD} ,

where p is the degree of the NURBS basis functions Rpi , i = 0, . . . , n defined on
the physical space Ω and where

GD = {i|Pi = (xi, yi) |xi ∈ ΓD} ,

G = {i|∃Pi = (xi, yi)} .

Remark 4.3. It is important to note that the basis functions are defined in the
physical space, and not in the parametric space.
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The approximate solution υ can then be written as the linear combination

υh (x) =
∑

i∈G\GD

ῡiR
p
i (x) .

A possible choice for γ is

γ (x) =
∑
i∈GD

gD (Pi)R
p
i (x) . (4.1)

By substitution we get:

a
(
Rpi , R

p
j

)
=

ˆ
Ω

(
a1
∂Rpi
∂x
·
∂Rpj
∂x

+ a0R
p
iR

p
j

)
dx, (4.2)

l
(
Rpj
)

=

ˆ
Ω

fRpjdx−
ˆ

Ω

a1

∑
i∈GD

gD (Pi)
∂Rpi
∂x
·
∂Rpj
∂x

dx+

−
ˆ

Ω

a0

∑
i∈GD

gD (Pi)R
p
iR

p
jdx+ [a1gNR

p
i ]
b
a . (4.3)

The system of algebraic equations is written with the following stiffness matrix
and force vector

Sh =
[
a
(
Rpi , R

p
j

)]
i,j∈G\GD

, (4.4)

F h =
[
l
(
Rpj
)]
j∈G\GD

, (4.5)

and the vector of unknowns

Ῡh = [ῡ]i∈G\GD .

It can be seen that Neumann and Dirichlet boundary conditions are imposed
just like in FEM. Our choice of γ in Equation (4.1) is possible only for open
knot vectors, for which the solution field interpolates the degrees of freedom at
the extremity of the patch (3.5.4). This is possible only for boundary control
points as the NURBS basis functions reach the unity only at the boundary.

Example 4.4. Consider the problem of Example 2.23: the exact solution and
the weak formulation (Equation (2.14)) has already been derived. Considering
the knot vector

Ξ =

{
0, 0,

1

3
,

2

3
, 1, 1

}
and basis functions of pth = 1st-degree, Isogeometric Analysis turns out to be
equivalent to the Finite Element Method, as the basis functions employed are
the roof functions defined in (2.10).

Example 4.5. Consider the problem of Example 2.23: the exact solution and
the weak formulation of the problem have already been derived. Isogeometric
Analysis can be used instead of Finite Element Method to get an approximation
of the result. Using the knot vector

Ξ1 = {0, 0, 0, 1, 1, 1}
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Figure 4.1: (a) Representation of an approximation (black curve) of the solution
of the problem of Example 2.23 whose exact solution is plotted in red. The ap-
proximation is obtained using the knot vector Ξ1 = {0, 0, 0, 1, 1, 1}. (b) NURBS
basis functions used for the approximation.

and NURBS basis functions on Ξ of 2nd-degree, the approximation of Figure
4.1 can be achieved.

It is possible to use different knot vectors in order to obtain a more accurate
approximation in specific areas. In Figure 4.2 the knot vector

Ξ2 = {0, 0, 0, 0.1, 0.2, 0.3, 1, 1, 1}

is used. It can be seen that the leftmost part of the approximated curve is more
accurate as the space used to represent the approximation is larger. In case the
same number of knots is better distributed on the domain like in

Ξ3 = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} ,

the entire curve is more accurate than the case of Figure 4.1, at the cost of a
less accurate leftmost part respect to the case of Figure 4.2.

Algorithm 4.1 presents an algorithm for the computation of the DOFs in
one-dimensional problems.

4.2.1 Transformation of the model to the parametric space

The case presented in Section 4.2 can be simply solved evaluating the integrals
in Equations 4.4 and 4.5. It is possible a similar process to that developed in
Subsection 2.3.2. The reference element in this case is the unit interval [0, 1],
the unit square [0, 1]

2 or the unit cube [0, 1]
3: the difference is that the entire

geometry is mapped in these elements, and not only single elements of the
physical space.
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Figure 4.2: (a) Representation of an approximation (black curve) of the solution
of the problem of Example 2.23 whose exact solution is plotted in red. The ap-
proximation is obtained using the knot vector Ξ2 = {0, 0, 0, 0.1, 0.2, 0.3, 1, 1, 1}.
(b) NURBS basis functions used for the approximation.
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Figure 4.3: (a) Representation of an approximation (black curve) of the
solution of the problem of Example 2.23 whose exact solution is plot-
ted in red. The approximation is obtained using the knot vector Ξ3 =
{0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. (b) NURBS basis functions used for the approxi-
mation.
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Algorithm 4.1 Algorithm for the computation of the DOFs through IGA in a
one-dimensional problem.

1function [ S , F , u ] = IA1DBsplines (a_1 , a_0 , f , xi_a , xi_b , Xi , p )
2a = Xi ( 1 ) ;
3b = Xi (end ) ;
4m = length (Xi ) − 1 ;
5for i = 1 : (m−p−2)
6for j = 1 : (m−p−2)
7integrand = @(y ) s t i f f n e s s I n t e g r a l (a_1 , p , Xi , i , j , y ) ;
8S( i , j ) = quad( integrand , a , b ) ;
9end
10integrand = @(y ) f o r c e I n t e g r a l (a_1 , f , xi_a , xi_b , p , Xi , i , y ) ;
11F( i , 1) = quad( integrand , a , b ) ;
12end
13S
14F
15u = l i n s o l v e (S , F ) ;
16
17function s = s t i f f n e s s I n t e g r a l (a_1 , p , Xi , i , j , y )
18for k = 1 : length ( y )
19de r i v s1 = der ivsBas i sFun (p , Xi , i , y ( k ) , 1 ) ;
20de r i v s2 = der ivsBas i sFun (p , Xi , j , y ( k ) , 1 ) ;
21s (k ) = a_1(y (k ) ) . ∗ de r i v s1 ( 2 ) . ∗ de r i v s2 ( 2 ) ;
22end
23
24function f o r c e = f o r c e I n t e g r a l (a_1 , f , xi_a , xi_b , p , Xi , i , y )
25for k = 1 : length ( y )
26de r i v s = der ivsBas i sFun (p , Xi , i , y ( k ) , 1 ) ;
27N = basisFun (p , length (Xi)−1 , Xi , i , y ( k ) ) ;
28f o r c e (k ) = f (y (k ) ) . ∗N − . . .
29a_1(y (k ) ) . ∗ dgamma( xi_a , xi_b , p , Xi , y (k ) ) . ∗ d e r i v s ( 2 ) ;
30end
31
32function dg = dgamma( xi_a , xi_b , p , Xi , y )
33for k = 1 : length ( y )
34de r i v s1 = der ivsBas i sFun (p , Xi , 0 , y (k ) , 1 ) ;
35de r i v s2 = der ivsBas i sFun (p , Xi , length (Xi)−p−2, y (k ) , 1 ) ;
36dg (k ) = xi_a . ∗ de r i v s1 (2 ) + xi_b .∗ de r i v s2 ( 2 ) ;
37end
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Transformation of functions to the parametric space Functions can be
transformed to the parametric space by composing them with the geometrical
map x̃:

ãl (ξ) = (al ◦ x̃) (ξ) = al (x̃ (ξ)) , l = 0, 1

R̃pl (ξ) = (Rpl ◦ x̃) (ξ) = Rpl (x̃ (ξ)) , l = 0, . . . , n,

f̃ (ξ) = (f ◦ x̃) (ξ) = f (x̃ (ξ)) .

Transformation of derivatives to the parametric space The transfor-
mation of the derivatives can be found using the chain rule

∂R̃pl
∂ξ

(ξ) =
∂ (Rpl ◦ x̃)

∂ξ
(ξ) =

∂Rpl
∂ξ

(x̃ (ξ)) · ∂x̃
∂ξ

(ξ) , l = 0, . . . , n.

For future use, the term (∂x̃/∂ξ) (ξ) will be denoted with Jx̃ (ξ), which in the
one-dimensional case is equal to it’s determinant |Jx̃ (ξ)|.

Transformation of integrals to the parametric space The last part of
the process consists in the transformation of the integrals of the linear and of
the bilinear forms of Equations (4.2) and (4.3)

a
(
Rpi , R

p
j

)
=

ˆ
Ω

(
a1
∂Rpi
∂x
·
∂Rpj
∂x

+ a0R
p
iR

p
j

)
dx,

l
(
Rpj
)

=

ˆ
Ω

fRpjdx−
ˆ

Ω

a1

∑
i∈GD

gD (Pi)
∂Rpi
∂x
·
∂Rpj
∂x

dx+

−
ˆ

Ω

a0

∑
i∈GD

gD (Pi)R
p
iR

p
jdx+ [a1gNR

p
i ]
b
a .

to the parametric space. This step can be done by using the substitution theo-
rem (see Section B.3), as already done in Sub subsection 2.3.2.2, on the bilinear
form

a
(
Rpi , R

p
j

)
=

ˆ
x̃(Ω̃)

((
a1
∂Rpi
∂x
·
∂RpJ
∂x

)
(x) +

(
a0R

p
iR

p
j

)
(x)

)
dx,

=

ˆ
Ω̃

((
a1
∂Rpi
∂x
·
∂RpJ
∂x

)
(x̃ (ξ)) +

(
a0R

p
iR

p
j

)
(x̃ (ξ))

)
Jx̃ (ξ) dξ,

hand on the linear form

l
(
Rpj
)

=

ˆ
Ω̃

(
fRpj

)
(x̃ (ξ)) dξ+

−
ˆ

Ω̃

a1 (x̃ (ξ))
∑
i∈GD

gD (Pi)

(
∂Rpi
∂x
·
∂Rpj
∂x

)
(x̃ (ξ)) dξ+

−
ˆ

Ω̃

a0 (x̃ (ξ))
∑
i∈GD

gD (Pi)
(
RpiR

p
j

)
(x̃ (ξ)) dx+ [a1 (x̃ (ξ)) gNR

p
i (x̃ (ξ))]

b
a .
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By substituting the functions derived above, we get that the bilinear form can
be evaluated in the parametric space with the equation

a
(
Rpi , R

p
j

)
=

ˆ
Ω̃

((
ã1

Jx̄

∂R̃pi
∂ξ

∂R̃pj
∂ξ

)
(ξ) +

(
ã0R̃

p
i R̃

p
jJx̄

)
(ξ)

)
dξ,

and the linear form with the equation

l
(
Rpj
)

=

ˆ
Ω̃

Jx̃

(
f̃ R̃pj

)
(ξ) dξ −

ˆ
Ω̃

ã1 (ξ)

Jx̃

∑
i∈GD

gD (Pi)

(
∂R̃pi
∂ξ
·
∂R̃pj
∂ξ

)
(ξ) dξ+

−
ˆ

Ω̃

ã0 (ξ)
∑
i∈GD

gD (Pi)
(
Jx̃R̃

p
i R̃

p
j

)
(ξ) dξ +

[
ã1 (ξ) g̃N (ξ) R̃pi (ξ)

]1
0
.

4.3 Two-dimensional problems

As already pointed in Section 4.2, we assume we are given a NURBS-based
model of the physical space with which we have to work. In the two-dimensional
case, this means we are given a net of (n+ 1) · (m+ 1) control points P i,j ,
i = 0, . . . , n, j = 0, . . . ,m, a set of (n+ 1) · (m+ 1) weights wi,j , i = 0, . . . , n,
j = 0, . . . ,m, and two knot vectors

Ξ =

0, . . . , 0︸ ︷︷ ︸
p+1

, ξp+1, . . . ξn, 1, . . . , 1︸ ︷︷ ︸
p+1

 , |Ξ| = n+ p+ 2,

H =

0, . . . , 0︸ ︷︷ ︸
q+1

, ηq+1, . . . ηm, 1, . . . , 1︸ ︷︷ ︸
q+1

 , |H| = m+ q + 2,

where p and q are respectively the degrees in the ξ and in the η direction.
Consider again the problem of solving an elliptic PDE equipped with bound-

ary conditions on a two-dimensional domain like (1.10). Isogeometric Analysis,
like the Finite Element Method, works on the weak formulation instead of work-
ing on the classical formulation. So, the same process applied in Sub-subsection
1.4.1 is necessary prior to the use of Isogeometric Analysis, and leads to the
weak formulation in (1.13) or in (1.12). The key equations are reported:

a (υ, ϕ) = l (ϕ) , ∀ϕ ∈ H1 (Ω)

where

a (υ, ϕ) =

¨
Ω

(a1∇υ · ∇ϕ+ a0υϕ) dz, υ, ϕ ∈ H1 (Ω)

l (ϕ) =

¨
Ω

(fϕ− a1∇γ · ∇ϕ− a0γϕ) dz +

ˆ
ΓN

(a1gNϕ) dS, ∀ϕ ∈ H1 (Ω) .
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Figure 4.4: Effects of the creation of a mesh with linear elements on a real world
model built using T-splines.

Approximation of the domain As explained in Section 2.4, the applica-
tion of the Finite Element Method in the solution of two-dimensional problems
requires some variational crimes. These variational crimes begin with the ap-
proximation of the domain Ω with another domain Ωh, which is exact only in
case the boundaries are piecewise-polynomials of the same degree of the shape
functions used in the analysis. This first approximation leads to the need of
approximating the boundaries and the Hilbert space. In the Isogeometric Anal-
ysis, the geometry is expressed through the use of the same CAD functions used
in design, which means the exact definition is used instead of an approximated
one. In Figure 4.4 it can be seen how the creation of a mesh with linear elements
can affect the model which is to be analyzed.

Knot vectors (mesh) In the Isogeometric Analysis the Subdomains are
called patches (see Table 4.1), and they are defined by the use of adequate
knot vectors. It is possible to associate a mesh K in the parametric space to the
knot vectors

K (Ξ, H) , {K = [ξi, ξi+1]⊗ [ηj , ηj+1] 6= ∅, i = 0, . . . , n− 1, j = 0, . . . ,m− 1} .

Approximation of the boundaries In the Finite Element Method the use
of the approximated domain Ωh instead of Ω can require the redefinition of the
boundary conditions, as it is possible that the new boundary ∂Ωh differs from
∂Ω. In Isogeometric Analysis the representation of the geometry is exact and
this means there is no more the need for an approximation of the boundary
conditions as well. Here, again, no variational crime is committed.

Approximation of the Hilbert space The Hilbert space is still defined on
the physical space Ω, so there is no variational crime as there was in the Finite
Element Method.
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Weak formulation The weak formulation remains unchanged as no varia-
tional crime has been committed.

Application of the Galerkin method The Galerkin method remains al-
most unchanged. As usual, it is possible to express the unknown function υh as
the linear combination of elements of the Galerkin subspace

υh (x, y) =
∑

[i,j]∈G\GD

Rp,qi,j (x, y) ῡi,j , (4.6)

where the ῡi,j are the degrees-of-freedom and GD is now defined by the set

GD = {[i, j] , i = 0, . . . , n, j = 0, . . . ,m|P i,j ∈ ΓD} ,

and
G = {[i, j] , i = 0, . . . , n, j = 0, . . . ,m|∃P i,j} .

Remark 4.6. It is important to note that, like in the one-dimensional case, the
basis functions are defined in the physical space, and not in the parametric
space. In this case, moreover, it is not simple to define these functions. This
problem is addressed in 4.3.1.

The new problem is now expressed by the linear system of equations∑
[i,j]∈G\GD

ῡi,j

¨
Ω

(
a1∇Rp,qi,j · ∇R

p,q
k,l + a0R

p,q
i,j R

p,q
k,l

)
dx =

¨
Ω

(
fRp,qk,l − a1∇γ · ∇Rp,qk,l − a0γR

p,q
k,l

)
dx+

ˆ
ΓN

a1gNR
p,q
k,l dS,

for all [k, l] ∈ G\GD. We can again write the Dirichlet lift as

γ (x) =
∑

[i,j]∈GD

Rp,qi,j (x) gD (P i,j) ,

getting the new system∑
[i,j]∈G\GD

ῡi,j

¨
Ω

(
a1∇Rp,qi,j · ∇R

p,q
k,l + a0R

p,q
i,j R

p,q
k,l

)
dx =

¨
Ω

fRp,qk,l dx−
¨

Ω

a1

∑
[i,j]∈GD

gD (P i,j)∇Rp,qi,j · ∇R
p,q
k,l dx+

−
¨

Ω

a0

∑
[i,j]∈GD

gD (P i,j)R
p,q
i,j R

p,q
k,l dx+

ˆ
ΓN

a1gNR
p,q
k,l dS,

for all [k, l] ∈ G\GD.
A more comfortable way of writing this, especially from the point of view

of the implementation, is using one index only for each NURBS basis function,
establishing a linear ordering of the basis functions. This can be done by using
a map m : R→ R2

m (i) = [m1 (i) ,m2 (i)] =

[⌊
i

m+ 1

⌋
, i−

⌊
i

m+ 1

⌋
(m+ 1)

]
,
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and whose inverse is
m−1 (k, l) = k (m+ 1) + l.

With this notation, the Galerkin subspace becomes

span {Rp,qi (x, y) , i = 0, . . . , (n+ 1) (m+ 1) | [m1 (i) ,m2 (i)] ∈ G\GD} ,

and the rest of the model has to be changed accordingly:∑
i|m(i)∈G\GD

ῡi

¨
Ω

(
a1∇Rp,qi · ∇R

p,q
j + a0R

p,q
i Rp,qj

)
dx =

¨
Ω

fRp,qj dx−
¨

Ω

a1

∑
i|m(i)∈GD

gD
(
Pm(i)

)
∇Rp,qi · ∇R

p,q
j dx+

−
¨

Ω

a0

∑
i|m(i)∈GD

gD
(
Pm(i)

)
Rp,qi Rp,qj dx+

ˆ
ΓN

a1gNR
p,q
j dS,

for all j|m (j) ∈ G\GD, where it is supposed that Pm(i) = Pm1(i),m2(i).

4.3.1 Transformation of the model to the parametric space

Remark 4.6 underlines the fact that the NURBS basis functions have to be
defined in the physical space, and not in the parametric space (the same situation
of the one-dimensional case). This makes it difficult to evaluate the integrals as a
definition of such functions is not simple. This is the same difficulty encountered
when trying to define the shape functions in FEM. The same concept applied
in the one-dimensional case can be extended to two dimensions. We would like
to use the NURBS basis functions defined in the parametric space as shape
functions in the physical space.

Transformation of the functions to the parametric space Functions can
be transformed to the parametric space by composing them with the NURBS
geometrical map x̃ (ξ) = [x̃1 (ξ) , x̃2 (ξ)]

T :

ãl (ξ) = (al ◦ x̃) (ξ) = al (x̃1 (ξ) , x̃2 (ξ)) , l = 0, 1,

R̃p,ql (ξ) = (Rp,ql ◦ x̃) (ξ) = Rp,ql (x̃1 (ξ) , x̃2 (ξ)) , l = 0, . . . , nm,

f̃ (ξ) = (f ◦ x̃) (ξ) = f (x̃1 (ξ) , x̃2 (ξ)) .

Transformation of derivatives to the parametric space The transfor-
mation of the derivatives can be found using the chain rule:

∂R̃p,ql
∂ξ

(ξ) =
∂Rp,ql
∂x

∣∣∣∣
x=x̃(ξ)

∂x̃1

∂ξ
(ξ) +

∂Rp,ql
∂y

∣∣∣∣
x=x̃(ξ)

∂x̃2

∂ξ
(ξ) ,

∂R̃p,ql
∂η

(ξ) =
∂Rp,ql
∂x

∣∣∣∣
x=x̃(ξ)

∂x̃1

∂η
(ξ) +

∂Rp,ql
∂y

∣∣∣∣
x=x̃(ξ)

∂x̃2

∂η
(ξ) .
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The result can be written in matrix form so that the Jacobian matrix can be
recognized:

∂R̃p,ql
∂ξ

∂R̃p,ql
∂η

 =


∂x̃1

∂ξ

∂x̃2

∂ξ
∂x̃1

∂η

∂x̃2

∂η


 ∂Rp,ql

∂x
∂Rp,ql
∂y

 =

(
Dx̃

Dξ

)T  ∂Rp,ql
∂x
∂Rp,ql
∂y

.
Dx̃/Dξ is the Jacobian matrix of the geometric map. The searched result can be
obtained by inverting the Jacobian matrix, and can be used in the computation
of the other needed gradient

∇Rp,ql (x) =

(
Dx̃

Dξ

)−T
∇R̃p,ql (ξ) .

Transformation of the integrals to the parametric space Using the
substitution theorem it is possible to transform the integrals to the parametric
space. The procedure leads to the result

¨
x̃(Ω̃)

((
a1∇Rp,qi · ∇R

p,q
j

)
(x) +

(
a0R

p,q
i Rp,qj

)
(x)
)
dx =

¨
Ω̃

Jx̃

((
ã1

(
Dx̃

Dξ

)−T
∇R̃p,qi

)((
Dx̃

Dξ

)−T
∇R̃p,qj

)
+ ã0R̃

p,q
i R̃p,qj

)
dξ,

and ¨
Ω̃

Jx̃f̃ R̃
p,q
j dx−

¨
Ω̃

Jx̃ã0

∑
i|m(i)∈GD

gD
(
Pm(i)

)
R̃p,qi R̃p,qj dx+

−
¨

Ω̃

Jx̃a1

∑
i|m(i)∈GD

gD
(
Pm(i)

)((Dx̃
Dξ

)−T
∇Rp,qi

)
·

((
Dx̃

Dξ

)−T
∇R̃p,qj

)
dx+

+

ˆ
ΓN

a1gNR
p,q
j dS.

The line integral can be transformed by using another parameterize function

χ (t) = (1− t)A1 + tA2.

The line integral can be written as
ˆ

ΓN

(
a1gNR

p,q
j

)
(x) dx =

ˆ 1

0

((
a1gNR

p,q
j

)
◦ χ (t)

)
·
∥∥∥∥∂χ (t)

∂t

∥∥∥∥ dt,
but it is immediate to see we don’t now the definition of Rp,qj (x). To determine
it, it would be necessary to compute the inverse of the map x̃. We would like,
instead, to integrate using R̃p,qj (ξ):

ˆ
Γ̃N

φ (ξ)
(
ã1g̃N R̃

p,q
j

)
(ξ) dξ =

ˆ 1

0

(
φã1g̃N R̃

p,q
j

)
(x̃ (χ (t))) ·

∥∥∥∥∂x̃ (χ (t))

∂t

∥∥∥∥ dt,
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where φ is a function which takes into account the change of geometry. By using
the chain rule we derive

∂x̃ (χ (t))

∂t
=
Dx̃

Dξ
(χ (t))

∂χ

∂t
.

We can then impose
ˆ 1

0

(
φa1gNR

p,q
j

)
(x̃ (χ (t))) ·

∥∥∥∥∂x̃ (χ (t))

∂t

∥∥∥∥ dt =

ˆ 1

0

((
a1gNR

p,q
j

)
◦ χ (t)

)
·
∥∥∥∥∂χ (t)

∂t

∥∥∥∥ dt
to derive that the integral can be written

ˆ 1

0

(
ã1g̃N R̃

p,q
j

)
(χ (t)) ·

∥∥∥∥Dx̃Dξ (χ (t))
∂χ

∂t

∥∥∥∥∥∥∥∥∂χ (t)

∂t

∥∥∥∥ dt =

ˆ 1

0

(
ã1g̃N R̃

p,q
j

)
(χ (t)) ·

∥∥∥∥Dx̃Dξ (χ (t))
∂χ/∂t

‖∂χ/∂t‖

∥∥∥∥ dt.
This obviously assumes the Neumann boundary is transformed to a segment in
the parametric space: it is possible to split this integral in more than one pa-
rameterized one-dimensional integrals when more segments are to be computed.

4.4 Approximation representing geometries and
solution fields

As already pointed in 4.1.3, IGA is based on the same data produced in the
design process, therefore the geometrical domain is not approximated, but it is
exact. For instance, if degree 4 NURBS’s are used in the CAD model, then the
computational domain used in IGA has degree 4. In classical FEM instead, the
geometrical domain is approximated using piecewise-polynomials, of degree 1
typically.

There is however a major difference in the CAD representation and the rep-
resentation needed in IGA: usually, in a CAD representation, one is interested
only in showing the boundaries of the elements, so that only the skin of the do-
main is represented. For instance, when representing a three-dimensional solid,
three-dimensional surfaces may be sufficient. In IGA, instead, we need to com-
pute solution fields, thus the whole computational domain has to be represented.
Boundary surfaces are not sufficient when analyzing a three-dimensional solid.
Unfortunately, this is not a trivial task: representing three-dimensional solids
is far more difficult than representing only their skin (see [1]). Let’s take for
instance the solid of Figure 4.5: related data of Table 4.2 prove this is not a
solid, but just a surface, and, from a geometrical representation point of view,
there would be no benefit in modelling as a trivariate solid. For IGA instead
this is not true.
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Figure 4.5: Ring plotted using Algorithm 3.9 with B-splines, using data in Table
4.2.

i P i,1 P i,2 P i,3 P i,4 P i,5

1 [5, 0,−1]
T

[6, 0,−1]
T

[6, 0, 0]
T

[6, 0, 1]
T

[5, 0, 1]
T

2 [5, 5,−1]
T

[6, 6,−1]
T

[6, 6, 0]
T

[6, 6, 1]
T

[5, 5, 1]
T

3 [0, 5,−1]
T

[0, 6,−1]
T

[0, 6, 0]
T

[0, 6, 1]
T

[0, 5, 1]
T

4 [−5, 5,−1]
T

[−6, 6,−1]
T

[−6, 6, 0]
T

[−6, 6, 1]
T

[−5, 5, 1]
T

5 [−5, 0,−1]
T

[−6, 0,−1]
T

[−6, 0, 0]
T

[−6, 0, 1]
T

[−5, 0, 1]
T

6 [−5,−5,−1]
T

[−6,−6,−1]
T

[−6,−6, 0]
T

[−6,−6, 1]
T

[−5,−5, 1]
T

7 [0,−5,−1]
T

[0,−6,−1]
T

[0,−6, 0]
T

[0,−6, 1]
T

[0,−5, 1]
T

8 [5,−5,−1]
T

[6,−6,−1]
T

[6,−6, 0]
T

[6,−6, 1]
T

[5,−5, 1]
T

9 [5, 0,−1]
T

[6, 0,−1]
T

[6, 0, 0]
T

[6, 0, 1]
T

[5, 0, 1]
T

Table 4.2: Data for ring of Figure 4.5 (continues to Table 4.3).
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i P i,6 P i,7 P i,8 P i,9

1 [4, 0, 1]
T

[4, 0, 0]
T

[4, 0,−1]
T

[5, 0,−1]
T

2 [4, 4, 1]
T

[4, 4, 0]
T

[4, 4,−1]
T

[5, 5,−1]
T

3 [0, 4, 1]
T

[0, 4, 0]
T

[0, 4,−1]
T

[0, 5,−1]
T

4 [−4, 4, 1]
T

[−4, 4, 0]
T

[−4, 4,−1]
T

[−5, 5,−1]
T

5 [−4, 0, 1]
T

[−4, 0, 0]
T

[−4, 0,−1]
T

[−5, 0, 1]
T

6 [−4,−4, 1]
T

[−4,−4, 0]
T

[−4,−4,−1]
T

[−5,−5,−1]
T

7 [0,−4, 1]
T

[0,−4, 0]
T

[0,−4,−1]
T

[0,−5,−1]
T

8 [4,−4, 1]
T

[4,−4, 0]
T

[4,−4,−1]
T

[5,−5,−1]
T

9 [4, 0, 1]
T

[4, 0, 0]
T

[4, 0,−1]
T

[5, 0,−1]
T

Table 4.3: Data for ring of Figure 4.5 (continues from 4.2).

According to the isoparametric paradigm, solution fields are also represented
using the same basis functions used in the representation of the geometry (i.e.
CAD basis functions). For a two-dimensional problem we have:

uh (ξ, η) =

n∑
i=0

m∑
j=0

Ñp
i (ξ) Ñq

j (η) ūi,j , (4.7)

whereas for a three-dimensional problem we have

uh (ξ, η, ζ) =

n∑
i=0

m∑
j=0

l∑
k=0

Ñp
i (ξ) Ñq

j (η) Ñr
k (ζ) ūi,j,k. (4.8)

These ways of expressing the approximated solution are similar to that of
FEM of Equation 2.7. We are using B-spline basis functions as they are more
simple to manage, but NURBS and T-spline basis functions could be used as
well, and they turn out to have some other interesting features. There are
some differences between Lagrange interpolating polynomials and B-spline basis
functions:

• B-spline basis functions are always positive;

• continuity along edges is not always C0 (this will be used in 4.6);

• for seven distinct knots, eight B-spline basis functions are defined, seven
Lagrange interpolating polynomials are defined over seven nodes;

• according to the properties of B-spline and NURBS basis functions, only
the first and the last basis functions have unity value, whereas this is not
the case for Lagrange interpolation for which the delta conditions require
unity value over each node. This result in a very important concept: B-
splines doesn’t interpolate, in general, the control points (the DOFs).

Remark 4.7. The last concept leads to a completely different interpretation
of the meaning of the DOFs: according to Theorem 2.24 the value of a DOF
was the value of the exact solution at a node in FEM. In IGA this is not true
anymore: it is not possible to know the solution value at a control point P i,j
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Figure 4.6: Comparison of (a) Lagrange polynomials interpolating 5, 6 and 6
points and (b) B-splines approximating the same points, taking those as control
points.

or at a given knot (ξi, ηj) by considering only the DOF ūi,j . The estimation of
the solution value at a given point of the physical space requires Equation (4.7)
or (4.8).

On the basis of Remark 4.7, a different behavior of typical finite elements func-
tions and of CAD technologies has to be pointed out: typical finite elements
functions are built to interpolate the DOFs, B-splines, NURBS’s and T-splines,
instead, don’t interpolate DOFs in IGA. Unfortunately, it is well known that
interpolating polynomials oscillate in attempting to fit discontinuous data and
that increasing the degree of the polynomial, the amplitude of the oscillations
increases as well: this is called Runge’s phenomenon (see 2.3.4.2). When the
points to be interpolated are used as control points instead, splines are able to
approximate1 more smoothly (see Figure 4.6). This comes from the variation
diminishing property of B-splines and NURBS formulated in 3.4.4 and 3.5.4.
This is very useful in case of sharp layers.

1Splines can both approximate and interpolate points more smoothly. In the case of IGA,
interpolation is not needed as control points doesn’t retain exact values like DOFs in FEM.
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4.5 Refinements
As already exposed in 3.4.1 it is possible to refine the process to obtain values
whose distance from the exact solution is smaller. Isogeometric Analysis dif-
fers from the Finite Element Method, as the coarsest mesh already stores all
the information of the geometrical shape of the domain. Therefore, subsequent
refinements don’t need to communicate with the CAD data in any way. The re-
finement techniques described in 2.10 have corresponding refinement techniques
in Isogeometric analysis, and a new alternative has been developed as well.

4.5.1 Knot insertion (h-refinement)
Considering the general form of a NURBS in (3.18) and the knot vector Ξ =
{ξ0, ξ1, . . . , ξm}, knot insertion is the problem of inserting the knot ξ ∈ [ξk, ξk+1)
in Ξ. The new knot vector can be rewritten with the following notation:

Ξ̄ =
{
ξ̄0 = ξ0, . . . , ξ̄k = ξk, ξ̄k+1 = ξ̄, ξ̄k+2 = ξk+1, . . . , ξ̄m+1 = ξm

}
.

The new NURBS is now expressed with the form

C̄
w

(ξ) =

n+1∑
i=0

N̄p
i (ξ) P̄

wi
i

where P̄wi
i , indicates the new ith weighted control point, which needs to be

determined.
Knot insertion doesn’t change the curve geometrically nor parametrically

(see Figure 4.7), but only adds elements to the solution space. Indeed, if CΞ
is the vector space which contains all the curves representable using the knot
vector Ξ and CΞ̄ is the vector space defined on Ξ̄, then CΞ ⊂ CΞ̄.

The computation of the new P̄wi
i ’s can be computed solving the linear system

of equations

n∑
i=0

Np
i (ξ)Pwi

i =

n+1∑
i=0

N̄i (ξ) P̄
wi
i , ξ = ξo, . . . , ξn+1.

However, a better way of determining the new control points is available as
it can be shown that

P̄
wi
i = αiP

wi
i + (1− αi)Pwi−1

i−1 , αi =


1, i ≤ k − p
ξ̄ − ξi

ξi+p − ξi
, k − p+ 1 ≤ i ≤ k

0, i ≥ k + 1

,

so

P̄
wi
i =


Pwi
i , i ≤ k − p
ξ̄ − ξi

ξi+p − ξi
· Pwi

i +
ξi+p − ξ̄
ξi+p − ξi

· Pwi−1

i−1 k − p+ 1 ≤ i ≤ k

P
wi−1

i−1 , i ≥ k + 1

.
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Figure 4.7: Example of knot insertion where two new knots 0.3 and 0.6 have
been added to the initial knot vector.

Example 4.8. As an example, in Figure 4.7 the same circle of Example 3.16 is
drawn with two new knots of values 0.6 and 0.3. As it can be seen, the resulting
curve is not different from the initial, whereas both the control points and the
knot vectors are different.

An efficient algorithm to perform knot insertion on a NURBS (or a B-spline)
curve is reported in Algorithm 4.2.

Example 4.9. As an example, in Figure 4.8 the same surface of Example 3.17
is drawn with two new knots of values 0.7 and 0.3 in the ξ direction and three
new knots of values 0.7, 0.5 and 0.3 in the η direction. As it can be seen, the
resulting surface is not different from the initial, whereas both the control net
and the knot vectors are different.

An efficient algorithm to perform knot insertion on a NURBS (or a B-spline)
surface is reported in Algorithm 4.3.

h-refinement turns out to be particularly important when T-splines are used
in Isogeometric Analysis: T-junctions allows for the insertion of control points
in specific areas where the analysis needs refinement. This local refinement
capability makes T-splines interesting both for the design and for the analysis
phases.

4.5.2 Degree elevation (p-refinement)
Considering the general form of a pth-degree NURBS curve Cw

p (ξ) in (3.18)
defined on a knot vector Ξ, the degree elevation is the problem of computing
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Algorithm 4.2 Knot insertion algorithm for curves.

1% curveKnotIns created a new NURBS curve from an ex i s t i n g one in which a
2% new knot barx i i s inser t ed in [ xi_k , xi_{k+1}) with mu l t i p l i c i t y r , where
3% barx i has current l y mu l t i p l i c i t y s .
4% Input :
5% nP: def ined according ly to the knot vector Xi ;
6% p : degree of the i n i t i a l curve ;
7% Xi : i n i t i a l knot vector ;
8% Pw: i n i t i a l weighted contro l po ints ;
9% barx i : va lue of the knot to be inser t ed ;
10% k : index of the knot span where the knot has to be inser t ed ;
11% s : i n i t i a l mu l t i p l i c i t y of the knot ;
12% r : mu l t i p l i c i t y of the knot in the new curve .
13% Output :
14% nBarP : new value of n def ined on the new knot vector ;
15% barXi : new knot vector ;
16% barPw : new weighted contro l po ints .
17function [ nBarP , barXi , barPw ] = curveKnotIns (nP , p , Xi , Pw, barxi , k , s , r )
18mP = nP+p+1;
19nBarP = nP+r ;
20
21% Load the new knot vector .
22barXi ( 1 : k+1) = Xi ( 1 : k+1);
23barXi (k+1+1:k+r+1) = barx i ;
24barXi (k+1+r+1:mP+r+1) = Xi (k+1+1:mP+1);
25
26% Save unal tered contro l po ints .
27barPw ( 1 : k−p+1, : ) = Pw( 1 : k−p+1, : ) ;
28barPw(k−s+r+1:nP+r+1, : ) = Pw(k−s+1:nP+1, : ) ;
29Rw( 1 : p−s+1, : ) = Pw(k−p+1:k−s+1, : ) ;
30
31% Inser t the knot r times .
32for j = 1 : r
33L = k−p+j ;
34for i = 0 : p−j−s
35alpha = ( barxi−Xi (L+i +1)) ./( Xi ( i+k+1+1)−Xi (L+i +1)) ;
36Rw( i +1, : ) = alpha . ∗Rw( i +1+1, :)+(1− alpha ) . ∗Rw( i +1, : ) ;
37end
38barPw(L+1, : ) = Rw(1 , : ) ;
39barPw(k+r−j−s+1, : ) = Rw(p−j−s+1, : ) ;
40end
41
42% Load remaining contro l po ints .
43for i = L+1:k−s−1
44barPw( i +1, : ) = Rw( i−L+1, : ) ;
45end
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Algorithm 4.3 Knot insertion algorithm for surfaces (continues to Algorithm
4.4).

1function [ nBarP , barXi , mBarP , barEta , barPw ] = . . .
2sur fKnotIns (nP , p , Xi , mP, q , Eta , Pw, dir , knot , k , s , r )
3% Rearrange contro l po ints .
4Pw = permute (Pw, [ 1 , 3 , 2 ] ) ;
5
6% Case of in se r t i on in the x i d i r ec t i on .
7i f dir == 0
8% Modify the knot vec tors parameters .
9nBarP = nP+r ;
10mBarP = mP;
11% Load the new knot vector in x i d i r ec t i on .
12barXi ( 1 : k+1) = Xi ( 1 : k+1);
13barXi (k+1+1:k+r+1) = knot ;
14barXi (k+1+r+1:nP+p+1+r+1) = Xi (k+1+1:nP+p+1+1);
15
16% Simply copy the other d i r ec t i on .
17barEta = Eta ( 1 : end ) ;
18
19% Compute the alphas .
20for j = 1 : r
21L = k−p+j ;
22for i = 0 : p−j−s
23alpha ( i +1, j +1) = ( knot−Xi (L+i +1)) ./( Xi ( i+k+1+1)−Xi (L+i +1)) ;
24end
25end
26
27% For each row . . .
28for row = 0 :mP
29% Save unal tered contro l po ints .
30for i = 0 : k−p , barPw( i +1, : , row+1) = Pw( i +1, : , row+1); end ;
31for i = k−s : nP , barPw( i+r+1, : , row+1) = Pw( i +1, : , row+1); end ;
32% Load aux i l i a r y contro l po ints .
33for i = 0 : p−s , Rw( i +1, : ) = Pw(k−p+i +1, : , row+1); end ;
34% Inser t the knot r times .
35for j = 1 : r
36L = k−p+j ;
37for i = 0 : p−j−s
38Rw( i +1, : ) = alpha ( i +1, j +1).∗Rw( i +1+1, : ) + . . .
39(1−alpha ( i +1, j +1)) .∗Rw( i +1, : ) ;
40end
41barPw(L+1, : , row+1) = Rw(0+1 , : ) ;
42barPw(k+r−j−s+1, : , row+1) = Rw(p−j−s+1, : ) ;
43end
44% Load the remaining contro l po ints .
45for i = L+1:k−s−1, barPw( i +1, : , row+1) = Rw( i−L+1, : ) ; end ;
46end
47% ( continues ) . . .
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Algorithm 4.4Knot insertion algorithm for surfaces (continues from Algorithm
4.3).

1% . . . ( continues )
2else
3% Modify the knot vec tors parameters .
4nBarP = nP ;
5mBarP = mP+r ;
6% Load the new knot vector in x i d i r ec t i on .
7barEta ( 1 : k+1) = Eta ( 1 : k+1);
8barEta (k+1+1:k+r+1) = knot ;
9barEta (k+1+r+1:mP+q+1+r+1) = Eta (k+1+1:mP+q+1+1);
10
11% Simply copy the other d i r ec t i on .
12barXi = Xi ( 1 : end ) ;
13
14% Compute the alphas .
15for j = 1 : r
16L = k−q+j ;
17for i = 0 : q−j−s
18alpha ( i +1, j +1) = ( knot−Eta (L+i +1)) ./( Eta ( i+k+1+1)−Eta (L+i +1)) ;
19end
20end
21
22% For each row . . .
23for row = 0 :nP
24% Save unal tered contro l po ints .
25for i = 0 : k−q , barPw( row+1, : , i +1) = Pw( row+1, : , i +1); end ;
26for i = k−s :mP, barPw( row+1, : , i+r+1) = Pw( row+1, : , i +1); end ;
27% Load aux i l i a r y contro l po ints .
28for i = 0 : q−s , Rw( i +1, : ) = Pw( row+1, : , k−q+i +1); end ;
29% Inser t the knot r times .
30for j = 1 : r
31L = k−q+j ;
32for i = 0 : q−j−s
33Rw( i +1, : ) = alpha ( i +1, j +1).∗Rw( i +1+1, : ) + . . .
34(1−alpha ( i +1, j +1)) .∗Rw( i +1, : ) ;
35end
36barPw( row+1, : , L+1) = Rw(0+1 , : ) ;
37barPw( row+1, : , k+r−j−s+1) = Rw(q−j−s+1, : ) ;
38end
39% Load the remaining contro l po ints .
40for i = L+1:k−s−1, barPw( row+1, : , i +1) = Rw( i−L+1, : ) ; end ;
41end
42end
43
44barPw = permute (barPw , [ 1 , 3 , 2 ] ) ;
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Figure 4.8: Example of knot insertion in a square plate with a hole.

the new control points P̄wi
i and the new knot vector Ξ̄ such that

Cw
p (ξ) = Cw

p+1 (ξ) =
n∑
i=0

Np+1
i (ξ) P̄

wi
i .

This way the curves continue to be the same geometrically and parametrically,
but Cw

p+1 belongs to a higher dimensional space.
Degree elevating a curve requires to compute the new knot vector and the

new control points P̄wi
i . The continuity of the curve has to be preserved, and

this is done increasing by one the multiplicity of each knot of

Ξ =

a, . . . , a︸ ︷︷ ︸
p+1

, ξp+1, . . . , ξp+1︸ ︷︷ ︸
mp+1

, . . . , ξn, . . . , ξn︸ ︷︷ ︸
mn

, b, . . . , b︸ ︷︷ ︸
p+1

 ,

getting the vector

Ξ̄ =

a, . . . , a︸ ︷︷ ︸
p+2

, ξp+1, . . . , ξp+1︸ ︷︷ ︸
mp+1+1

, . . . , ξn, . . . , ξn︸ ︷︷ ︸
mn+1

, b, . . . , b︸ ︷︷ ︸
p+2

 ,

where
|Ξ| = p+ n+ 2,

∣∣Ξ̄∣∣ = p+ n+ 2 + (n+ 2) .
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The basic (and inefficient) approach to compute the P̄wi
i ’s requires solving

the linear system of equations

n̄∑
i=0

Np+1
i (ξ) P̄ i =

n∑
i=0

Np
i (ξ)P i, ξ = ξ0, . . . , ξn̄,

where the υi’s are to be chosen appropriately.
An alternative (and more efficient) algorithm is proposed in [24]: the idea

is to extract Bézier curves segments from the NURBS, degree elevate them and
to remove knots separating the curves to obtain the new NURBS curve.

4.5.3 {hp, ph}-refinement
As in classical FEM, it is possible to use both h-refinement and p-refinement
during a single refinement process. It has been shown that this kind of re-
finement technique has many interesting advantages. In Isogeometric Analysis,
hp-refinement can be performed as well by performing first not insertion and
then degree elevating.

A new refinement method can be analyzed as knot insertion and degree
elevation do not commute. This means it is possible to obtain different results
by degree elevating the curve and then by inserting the new knot. ph-refinement
is a different strategy of degree elevation technique which is able to achieve the
same results of p-refinement, keeping the number of basis functions considerably
lower.

4.6 Numerical quadrature for IGA
As already stated in Section 2.7, a relevant part of the computational time
in FEM is related to the numerical integrations. In Subsections 2.4.4.2 and
2.3.2.2 we divided the integrals on the domains defined during the meshing
phase of FEM. This technique was very practical in the process of assembling the
matrices. A similar technique could be implemented in Isogeometric Analysis
where the NURBS-based model is decomposed into a finite number of patches,
and again decomposed into a grid of rectangular (in two dimensions) or paral-
lelepipedal (in three dimensions) “elements”. Again, the most obvious technique
of numerical integration is the Gauss integration. The first document to ana-
lyze this problem is [19]. The following analysis will explain that this behavior
could be made more efficient in Isogeometric Analysis, where the shape functions
posses different continuity properties than FEM shape functions.

Both in Isogeometric Analysis and in FEM, integration has to be done over
product of functions and gradients of the same functions on the parametric
space and on the reference domain respectively. In Isogeometric Analysis in
particular, these types of integrals are commonly computed (these reported
refers to two-dimensional problems):

¨
[0,1]2

φ (ξ)Rp,qi,j (ξ)Rp,qk,l (ξ) dξ, (4.9)

¨
[0,1]2

φ (ξ)∇Rp,qi,j (ξ)∇Rp,qk,l (ξ) dξ, (4.10)
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¨
[0,1]2

φ (ξ)∇Rp,qi,j (ξ)Rp,qk,l (ξ) dξ, (4.11)

¨
[0,1]2

φ (ξ)∇Rp,qi,j (ξ)Rp,qk,l (ξ)Rp,qr,s (ξ) dξ. (4.12)

In Equations from (4.16) to (4.19), the function φ (ξ) is a function which takes
into account both the change of geometry (Substitution theorem) and the co-
efficients of the PDE, the Ri,j ’s are the NURBS basis functions defined on the
correct knot vectors and weights.

4.6.1 Numerical quadrature of Ck-continuous functions

In Chapter 2, we defined our basis with shape functions defined on the domain of
the problem: these functions were piecewise-polynomials defined on the elements
of the mesh. These piecewise-polynomials had continuity C+∞ on the elements
interior, but were only C0 on the boundaries of the elements (only continuous).
Let’s consider two elements, (−1, 0) and (0, 1), where we define a quadratic
piecewise-polynomial basis with C0 continuity on the boundaries. This basis
can be analytically expressed with the six functions:

ϕ1 (ξ) = 1, ∀ξ ∈ [−1, 1] ,

ϕ2 (ξ) =

{
−1, ∀ξ ∈ [−1, 0)

1, ∀ξ ∈ (0, 1]
,

ϕ3 (ξ) = ξ, ∀ξ ∈ [−1, 1] ,

ϕ4 (ξ) =

{
−ξ, ∀ξ ∈ [−1, 0)

ξ, ∀ξ ∈ (0, 1]
,

ϕ5 (ξ) = ξ2, ∀ ∈ [−1, 1] ,

ϕ6 (ξ) =

{
−ξ2, ∀ξ ∈ [−1, 0)

ξ2, ∀ξ ∈ (0, 1]
.

Supposing no continuity in 0, if we want to be able to integrate exactly any
ϕ ∈ S2,−1 = span {ϕi, i = 1, . . . , 6}, we need to repeat the process of Subsection
2.7.1 for the calculation of the weights and of the integration points, using the
elements in P−1.

Notation 4.10. Notice that the notation of Chapter 3 of SpΞ is replaced by Sp,k or
Sp,k (M (M)) as, in this section it is more important to remark the continuity
than the specific knot vector and the set over which the basis functions are
defined.

Alternatively, we can integrate separately the two intervals using a two-point
Gauss rule in each sub interval, for a total number of four integration points.

Supposing, instead, continuity C0 in 0, we can remove ϕ2 (ξ) from the basis
of S2,−1 getting a basis with 5 functions. With 5 functions, only 3 integration
points and weights are obtained from the system. Similarly, for C2 continuity,
ϕ4 (ξ) and ϕ6 (ξ) have to be removed from the basis, and only 3 functions are
used to create the system, which provides 2 integration points and 2 weights
only. So, the the resulting concept is that increasing the continuity reduces
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k p even p odd
−1 p+ 2 p+ 1

even p+ 1− k
2

odd p+ 1− k+1
2

Table 4.4: Number of integration points necessary for the exact evaluation of´ 1

−1
ϕ (ξ) dξ, with ϕ ∈ Sp,k and k ∈ ([−1, p− 1] ⊂ N).

the number of integration points necessary to exact integrate the piecewise-
polynomial. Table 4.4 summarizes these results.

All this suggests that the FEM approach to integration is not necessarily
good in Isogeometric analysis as well. In this case, the integration of the spans
singularly, can result in requiring more function evaluations than an integration
over more spans.

Let’s now consider a more general case whereMh (R) is a uniform mesh of
R with each element Km ∈Mh (R) have length h. Functions in Sp,−1 (Mh (R))
can be evaluated with common Gauss integration on each element using nKm
Gauss integration points, where nKm = p+1/2 when p is odd and nKm = p+2/2
when p is even. The exact integration can be expressed with

ˆ
R
ϕ (ξ) dξ =

∑
Km∈Mh(R)

nKm∑
i=1

hwKm,iϕ (ξKm,i). (4.13)

This integration is used in FEM when integrating on the different elements as
functions are in Sp,0, which means we need, for the case of Table 4.4, p+1−k/2 =
p+1 integration points. In Isogeometric Analysis instead, we typically have some
kind of higher regularity between elements. When there is no repeated knot in
the knot vector, the basis function is Cp−1, and so belongs to Sp,p−1 (Mh (R)).
In this particular case it can be shown that only one integration point every two
elements is sufficient to get an exact integration. When p is odd the points are
placed in the middle of the elements, when p is even, instead, the integration
points are placed over the knots. The integration of a function ϕ ∈ Sp,p−1 can
then be written: ˆ

R
ϕ (ξ) dξ =

∑
i∈Z

hwhalf-pointϕ (ξi).

This equation can be now used with a B-spline basis functionNp
j (ξ) ∈ Sp,p−1 (Mh (R)):

ˆ
R
Np
j (ξ) dξ =

∑
i∈Z

hwhalf-pointN
p
j (ξi).

Noticing that whalf-point is independent on p and i, it is possible to express it as

whalf-point =

´
RN

p
j (ξ) dξ

h
∑
i∈ZN

p
j (ξi)

, (4.14)

which can be further modified considering the translation property Np
j (ξ) =

Np
0 (ξ − jh) and the symmetry property Np

0 (ξ) = Np
0 ((p+ 1)h− ξ):

whalf-point =

´
RN

p
0 (ξ) dξ

h
∑
i∈ZN

p
0 (ξi)

,
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where Np
0 (ξ) can be evaluated with the recursive definition

N0
0 (ξ) =

{
1, 0 ≤ ξ ≤ 1

0, otherwise
,

Np
0 (ξ) =

ξNp−1
0 (ξ) + (p+ 1− ξ)Np−1

0 (ξ − 1)

p
.

The numerator of (4.14) can be rewritten integrating over its support (0, (p+ 1)h):
ˆ
R
Np

0 (ξ) =

ˆ (p+1)h

0

Np
0 (ξ) dξ =

p∑
i=0

ˆ (i+1)h

ih

Np
0 (ξ) dξ.

Again, as the support of Np
j (ξ) is (jh, (j + p+ 1)h), the integration can be

done over shifted version of the basis functions
p∑
i=0

ˆ (i+1)h

ih

Np
0 (ξ) dξ =

ˆ h

0

p∑
j=0

Np
−j (ξ) dξ

which, by the partition of unity property, can be simplified to
ˆ h

0

p∑
j=0

Np
−j (ξ) dξ =

ˆ h

0

1dξ = h.

The denominator can be simplified as well: first of all the symmetry property
allows to rewrite the summation∑

i∈Z
Np

0 (ξi) =
1

2

(∑
i∈Z

Np
0 (ξi) +

∑
i∈Z

Np
0 ((p+ 1)h− ξi)

)
,

=
1

2

∑
j∈Z

Np
−j (ξ0)

 ,

=
1

2
.

This means whalf-point = 2, and (4.14) becomes
ˆ
R
ϕ (ξ) dξ =

∑
i∈Z

2hϕ (ξi), ∀ϕ (ξ) ∈ Sp,p−1 (Mh (R)) . (4.15)

(4.15) was first derived in [19] and named half-point rule. It has the same compu-
tational cost per degree-of-freedom as Gauss integration of Equation (4.13) for
Sp,−1 (Mh (R)), which is one function evaluation every two degrees-of-freedom.
The computational cost of element-wise Gauss integration would be instead
much higher. Table 4.5 summarizes the results.

4.6.2 Numerical quadrature by one-dimensional integra-
tions

We can approximate these integrals considering that the function φ (ξ) and
the denominators of the NURBS basis functions change slowly, and the contri-
butions to the integrals can often be considered constant. This result in the
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Space Gauss rule (4.13) Half-point rule (4.15)
Sp,p−1 (Mh (R)), p odd p+1/2 1/2
Sp,p−1 (Mh (R)), p even p+2/2 1/2

Table 4.5: Number of integration points (function evaluations) for Gauss in-
tegration and half-point rule to exactly integrate element-wisely a function in
Sp,p−1 (Mh (R)).

possibility of considering the integrals from (4.16) to (4.19) with the forms
¨

[0,1]2
Np,q
i,j (ξ)Np,q

k,l (ξ) dξ, (4.16)

¨
[0,1]2

∇Np,q
i,j (ξ)∇Np,q

k,l (ξ) dξ, (4.17)

¨
[0,1]2

∇Np,q
i,j (ξ)Np,q

k,l (ξ) dξ, (4.18)

¨
[0,1]2

∇Np,q
i,j (ξ)Np,q

k,l (ξ)Np,q
r,s (ξ) dξ. (4.19)

Let’s consider the case of tensor-product piecewise-quadratic C1 basis func-
tions: the integral of Equation (4.17), for instance, is

¨
[0,1]2

∇N2,2
i,j (ξ)∇N2,2

k,l (ξ) dξ.

The two gradients can be written as

∇N2,2
i,j (ξ) =

[
N2
j (η)

∂N2
i (ξ)

∂ξ
,N2

i (ξ)
∂N2

j (η)

∂η

]
,

∇N2,2
k,l (ξ) =

[
N2
l (η)

∂N2
k (ξ)

∂ξ
,N2

k (ξ)
∂N2

l (η)

∂η

]T
,

and the integral, by substitution, is

¨
[0,1]2

(
N2
j (η)N2

l (η)
∂N2

i (ξ)

∂ξ

∂N2
k (ξ)

∂ξ
+N2

i (ξ)N2
k (ξ)

∂N2
j (η)

∂η

∂N2
l (η)

∂η

)
dηdξ.

The reduction theorem yields
ˆ 1

0

N2
j (η)N2

l (η)︸ ︷︷ ︸
S4,1

dη

ˆ 1

0

∂N2
i (ξ)

∂ξ

∂N2
k (ξ)

∂ξ︸ ︷︷ ︸
S2,0

dξ+

+

ˆ 1

0

N2
i (ξ)N2

k (ξ)︸ ︷︷ ︸
S4,1

dξ

ˆ 1

0

∂N2
j (η)

∂η

∂N2
l (η)

∂η︸ ︷︷ ︸
S2,0

dη. (4.20)
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Basis functions Force Stiffness Linear adv. Nonlinear adv.
p = 1, q = 1, C0 S2,0 S0,−1, S1,−1,S2,0 S1,−1, S2,0 S2,−1, S3,0

p = 2, q = 2, C1 S4,1 S2,0, S3,0,S4,1 S3,0, S4,1 S5,0, S6,1

Table 4.6: Sets to which the terms to be integrated belong while integrating
piecewise-linear continuous basis functions and piecewise-quadratic C1 basis
functions. The force vector, stiffness matrix, linear advection and nonlinear
advection terms are analyzed.

From these integrals it is clear that integrals of the form of Equation (4.17) can
be evaluated exactly integrating exactly in one dimension functions in S4,1 and
functions in S2,0. The same reasoning can be done for the other integrals, and
the results are summarized in Table 4.6.

The considerations reported so far suggest that it would be more efficient to
integrate over more than one element. In FEM, the continuity is only C0, so no
benefit would be gained integrating on more elements. Due to higher continuity,
integration of B-spline basis functions is more efficient when is done over more
elements. This is the reason why macro-elements are defined: macro-elements
are made up of elements of the same size (within the same macro-element) and
integrations are evaluated over them. Equation (4.15) can be used and adapted
to macro-elements Mm:
¨
Mm

ϕ (ξ) dξ =

nMm∑
i=1

HwMm,iϕ (ξMm,i) , ∀ϕ ∈ a basis of Sq,k (Mh (Mm)) .

This equation leads again to a system of equations which has to be solved for
the 2nMm unknowns wMm,i and ξMm,i. If p is the integrand function order,
r = p − k is the inter-element regularity and nel is the number of elements in
Mm then we have that (see Equation (3.4))

ndof = (p+ 1) · nel − (p− r + 1) · (nel − 1)

is the number of degrees-of-freedom and

nMm
=
⌈ndof

2

⌉
.

An algorithm is proposed in Algorithm 4.5, the algorithm for the computa-
tion of the system of nonlinear equations is reported in Algorithm 4.6. Results
of these algorithms are reported in Tables (4.7)-(4.11).

4.6.3 Numerical quadrature by two-dimensional integra-
tions

The numerical quadrature studied so far requires that the integrals can be de-
composed in one-dimensional integrals using the reduction theorem. However,
this is possible only when we assume the function φ (ξ) is constant. This is
not frequent to happen, even when B-spline basis functions are used instead of
NURBS basis functions: the determinant of the Jacobian matrix and the Jaco-
bian matrix itself are not constant on the integration domain, and are as well
not separable in (4.20).
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Algorithm 4.5 Algorithm for the computation of the Gauss integration points
and weights for “exactly” integrate functions in Sp,k ([0, 1]).

1% computeGaussPointsWeights computes the Gauss in t eg ra t i on points and
2% weigths to " exac t l y " in t eg ra t e B−sp l i ne bas i s funct ions of degree at
3% most p on a number ne l of elements a l l o f the same leng th where the
4% cont inu i ty of the funct ions i s C^k . The domain considere i s (0 ,1) .
5% Input :
6% p : max degree of the funct ions to in t e g ra t e " exac t l y ";
7% nel : number of elements ( elements are considered a l l o f the same
8% leng th .
9% k : cont inu i ty i s C^k .
10% Output :
11% wxi : wxi [ i ] , i s an in t eg ra t i on point or a weight i f i i s odd or even
12% re s p e c t i v l y .
13%funct ion wxi = computeGaussPointsWeights (p , nel , k )
14
15% Def in i t ion of the knot vector ( uniform ) .
16Xi ( 1 : p+1) = 0 ;
17j = 1 ;
18for i = p+1+1:p−k : p+1+(nel −1).∗(p−k )
19Xi ( i : i+p−k ) = 1 . / ( ne l ) . ∗ j ;
20j = j +1;
21end
22Xi (p+1+(nel −1)∗(p−k)+1:p+1+(nel −1)∗(p−k)+1+p) = 1 ;
23% Computation of the reduced cont inu i ty .
24r = p−k ;
25% Computation of the number of degrees−of−freedom .
26ndof = (p+1)∗nel−(p−r +1)∗( nel −1);
27% computation of the number of in t eg ra t i on points to use .
28nquad = ce i l ( ndof / 2 ) ;
29% Computation of the number of knots minus one .
30m = length (Xi )−1;
31
32% Integra t ion of the bas i s funct ions .
33% Ite ra t i on on bas i s funct ions .
34i n t (m−p) = 0 ;
35for i = 0 :m−p−1
36% Def in i t ion of the funct ion .
37f = @(x ) basisFun (p , m, Xi , i , x ) ;
38% Evaluation of the i n t e g r a l .
39i n t ( i +1) = quad( f , 0 , 1 , 1e−15);
40end
41
42% Def in i t ion of the nonlinear system .
43F = @(x ) gaussEquations (p , m, Xi , int , nquad , x ) ;
44
45% Set t ing the opt ions for the eva luat ion of the nonlinear system .
46opt ions = optimset ( ’TolX ’ , 1e−6, ’TolFun ’ , 1e −6 , . . .
47’MaxFunEvals ’ , 1e7 , ’ MaxIter ’ , 1e7 , ’ Display ’ , ’ on ’ ) ;
48
49% Solv ing the nonlinear system .
50% =============================
51% e x i t f l a g < 0 ind i ca t e s the procedure has f a i l e d for some reason .
52e x i t f l a g = −2;
53% In i t i a l guess of so lu t i on .
54x_0 (2 . ∗ nquad ) = 0 ;
55% I t e ra t e t i l l the system i s eva luated acceptab ly .
56while e x i t f l a g < 0
57% Define the i n i t i a l guess ( I want the components to be < 1 and >= 0) .
58for i = 1 : 2 . ∗ nquad
59x_0( i ) = rem(rand (1 , 1 ) , Xi (end)−Xi (1)+1) + Xi ( 1 ) ;
60end
61% Solut ion of the nonlinear system .
62[ wxi , f va l , e x i t f l a g , output , j acob ian ] = f s o l v e (F , x_0 , opt ions ) ;
63end
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Algorithm 4.6 Algorithm for the computation of the value of each equation in
the nonlinear system for a possible solution x.

1function [F ] = gaussEquat ions (p , m, Xi , int , nquad , x )
2% Creation of the matrix ( p rea l l o ca t i on ) .
3F(m−p−1+1) = 0 ;
4% Calcu lat ion of the number of the contro l po ints minus one .
5n = m−p−1;
6
7% Itara t i ons using ca l cu l a t i on of s i n g l e bas i s funct ions .
8% for j = 1:m−p−1+1
9% for k = 1: nquad
10% F( j ) = F( j )+x (2 .∗( k−1)+1+1).∗...
11% basisFun (p , m, Xi , j−1, x (2 .∗( k−1)+1));
12% end
13% end
14
15% It e ra t i on s using ca l cu l a t i on of a l l the nonvanishing funct ions for each
16% ca l l .
17for k = 1 : nquad
18% I don ’ t consider so l u t i on s where the in t eg ra t i on point i s outs ide
19% the in t eg ra t i on domain .
20i f x ( 2 . ∗ ( k−1)+1) >= 1 | | . . .
21x ( 2 . ∗ ( k−1)+1) < 0 , break ; end ;
22% Computation of the knot span the candidate in t eg ra t i on point
23% belongs to .
24i = findSpan (n , p , x ( 2 . ∗ ( k−1)+1) , Xi ) ;
25% Computing a l l the nonvanishing B−sp l i ne bas i s funct ions in the
26% integra t i on point .
27N = basisFuns ( i , x ( 2 . ∗ ( k−1)+1) , p , Xi ) ;
28% Evaluation of the equat ions ( only one member ) .
29for j = 0 : p
30F( i−j +1) = F( i−j+1)+x ( 2 . ∗ ( k−1)+1+1).∗N(p−j +1);
31end
32end
33
34% Add a symmetry condi t ion i f needed .
35i f m+1−p−1 < 2∗nquad
36F(2∗nquad ) = x( ce i l ( nquad ./2)+1) + x(nquad−ce i l ( nquad ./2)+1+1) − 1 ;
37end
38
39% Subtract the " exact " i n t e g r a l s .
40for i = 1 : length ( i n t )
41F( i ) = F( i )− i n t ( i ) ;
42end

ξ[0,1),i 2 spans 3 spans 4 spans 5 spans
ξ[0,1),1 0.833333333333367 0.948645469027478 0.904711817893507 0.457777823250046
ξ[0,1),2 0.500000000000000 0.717511861375525 0.313143439853511 0.882088086363297
ξ[0,1),3 0.166666664870387 0.111111111111113 0.500000014840651 0.691228286634788
ξ[0,1),4 - 0.407407407407409 0.683909215048782 0.691229590640683
ξ[0,1),5 - - 0.322471174843453 0.258073457384546
ξ[0,1),6 - - - 0.066273731840079

w[0,1),i 2 spans 3 spans 4 spans 5 spans
w[0,1),1 0.374999999999985 0.146083289946954 0.229417413380509 0.202575467696076
w[0,1),2 0.250000004047672 0.282488138624475 0.496211733755255 0.270092166688278
w[0,1),3 0.374999995952344 0.250000000000001 0.124127514678909 5131.266376438610678
w[0,1),4 - 0.321428571428575 0.246294438348830 -

5131.032497567794053
w[0,1),5 - - -0.197591080045694 0.255992610234059
w[0,1),6 - - - 0.170849756282850

Table 4.7: Gauss points and weights for “exact” quadrature in [0, 1) of functions
S2,0 ([0, 1)).
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ξ[0,1),i 2 spans 3 spans 4 spans 5 spans
ξ[0,1),1 0.166084941241376 0.923383257935759 0.320339951871245 0.402547023824487
ξ[0,1),2 0.579519205297671 0.076616742065828 0.704204902052694 0.174032889157233
ξ[0,1),3 0.907388611933888 0.500000000000000 0.510975818880721 0.630049724739978
ξ[0,1),4 0.166090495942244 0.709945075524140 0.906846799509926 0.045968878372119
ξ[0,1),5 - 0.290054924497223 0.240717961537833 0.926794576332642
ξ[0,1),6 - - 0.061271036140975 0.502683509307378
ξ[0,1),7 - - 0.273706345581009 0.300003871818280
ξ[0,1),8 - - - 0.773511908662025

w[0,1),i 2 spans 3 spans 4 spans 5 spans
w[0,1),1 -

606.535132106401875
0.181434731778163 0.439077001607745 0.071050245298913

w[0,1),2 0.405509975080273 0.181434731855367 0.203870250601339 0.124474011028752
w[0,1),3 0.240811371644811 0.222213207940754 0.135504983576706 0.133798040564846
w[0,1),4 606.895868560192753 0.207458628807443 0.184264463132512 0.108857539657346
w[0,1),5 - 0.207458628730237 0.413817312617704 0.146459106667955
w[0,1),6 - - 0.145238149943137 0.129856790925803
w[0,1),7 - - -0.552180405364183 0.133341211220522
w[0,1),8 - - - 0.141451812505181

Table 4.8: Gauss points and weights for “exact” quadrature in [0, 1) of functions
S3,0 ([0, 1)).

ξ[0,1),i 2 spans 3 spans 4 spans 5 spans
ξ[0,1),1 0.428435167162567 0.048393309887333 0.215911159823009 0.919915886144466
ξ[0,1),2 0.428434552289109 0.177956276631099 0.937131285756656 0.674049255828765
ξ[0,1),3 0.121206682077936 0.500092916978055 0.215911990788857 0.080739746529892
ξ[0,1),4 0.917131596800970 0.706031373148391 0.342198509312834 0.499834550305687
ξ[0,1),5 0.665679754403337 0.916128622780179 0.061233362771563 0.570177698674665
ξ[0,1),6 - 0.055906637652176 0.478517201160487 0.784021230583838
ξ[0,1),7 - 0.317698239158576 0.625468892856977 0.368135066512957
ξ[0,1),8 - - 0.779573919378795 0.784164302334527
ξ[0,1),9 - - 0.937125207014475 0.515578174346808
ξ[0,1),10 - - - 0.675049543245028
ξ[0,1),11 - - - 0.226399017799747

w[0,1),i 2 spans 3 spans 4 spans 5 spans
w[0,1),1 -0.229998305348650 0.230709827099232 -0.362634110925567 0.139577217807637
w[0,1),2 0.500000106347717 0.159874024538251 -0.147415807665407 -0.132378555081982
w[0,1),3 0.271526702403672 0.219895327544213 0.499999835921352 0.139885118158629
w[0,1),4 0.199201237919740 0.194246212660173 0.137159375742357 0.402930948757977
w[0,1),5 0.252712472333265 0.185937544149411 0.136790077641194 0.149077195992203
w[0,1),6 - -0.133527737279334 0.125019289354648 -0.243538802938613
w[0,1),7 - 0.129234963447895 0.164949280922275 0.125344169690181
w[0,1),8 - - 0.145583932965228 0.345828566120191
w[0,1),9 - - 0.286837477632445 -0.352955477555863
w[0,1),10 - - - 0.242691125013453
w[0,1),11 - - - 0.130687525984878

Table 4.9: Gauss points and weights for “exact” quadrature in [0, 1) of functions
S4,0 ([0, 1)).
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ξ[0,1),i 2 spans 3 spans 4 spans 5 spans
ξ[0,1),1 0.042770562048058 0.536516567860769 0.625846047432515 0.458935495248663
ξ[0,1),2 0.390281981608041 0.944080500381908 0.518075205400184 0.550323502455676
ξ[0,1),3 0.502198842842684 0.175089395445756 0.030374840976267 0.105428992977702
ξ[0,1),4 0.674782372288326 0.652087074128506 0.957994211814058 0.389553596573982
ξ[0,1),5 0.194261336319405 0.408122626544791 0.233675153602255 0.186694554722707
ξ[0,1),6 0.211213254219571 0.407358466253176 0.233669350226360 0.940298114384035
ξ[0,1),7 0.917450573805243 0.040128526153241 0.957994100005439 0.622526382356290
ξ[0,1),8 - 0.780866504010469 0.733780277308149 0.304845457699348
ξ[0,1),9 - 0.175091190745680 0.132322384928325 0.024181794117765
ξ[0,1),10 - 0.309069571522065 0.835507061935651 0.287597884998844
ξ[0,1),11 - - 0.430659773138450 0.727223653119565
ξ[0,1),12 - - 0.430821115624636 0.550284004273494
ξ[0,1),13 - - 0.319133784503069 0.254221673779585
ξ[0,1),14 - - - 0.186742440658334
ξ[0,1),15 - - - 0.822296228289488
ξ[0,1),16 - - - 0.622525471004493

w[0,1),i 2 spans 3 spans 4 spans 5 spans
w[0,1),1 0.106654746406427 0.136073617398366 0.121968600079509 0.087765889178017
w[0,1),2 0.167378453597293 0.129036791661816 0.085178388092226 0.452614993814528
w[0,1),3 0.087997596581449 0.347912881100316 0.074125732685454 0.092189860090221
w[0,1),4 0.247020407398512 0.097952287825981 0.500000001781344 0.059683766666144
w[0,1),5 0.124374267603976 -0.304512556922801 0.165203759963084 0.813297114006685
w[0,1),6 0.068711456934242 0.417147517206252 -0.084535545806424 0.109138250470302
w[0,1),7 0.191199446748913 0.098004632909778 -0.403111741632715 0.421519318769177
w[0,1),8 - 0.165391841140297 0.088598218721909 0.206058167707416
w[0,1),9 - -0.194682693842008 0.115606170373304 0.059040102106830
w[0,1),10 - 0.102715714062121 0.124015609557615 -0.179658803900306
w[0,1),11 - - -0.228374746123211 0.106427494461614
w[0,1),12 - - 0.332496327089866 -0.371468049703903
w[0,1),13 - - 0.104324263315390 0.117476863076052
w[0,1),14 - - - -0.750539592908463
w[0,1),15 - - - 0.095416934612510
w[0,1),16 - - - -0.338941011896593

Table 4.10: Gauss points and weights for “exact” quadrature in [0, 1) of functions
S6,0 ([0, 1)).

ξ[0,1),i 2 spans 3 spans 4 spans 5 spans
ξ[0,1),1 0.646332563472504 0.785223269956529 0.072188925973708 0.142839577504758
ξ[0,1),2 0.353667436496891 0.097993118328453 0.416461056437632 0.400172082710462
ξ[0,1),3 0.915998404219064 0.785210003839279 0.072189051563378 0.942251167494534
ξ[0,1),4 0.084001595757942 0.330380669998786 0.927811178643384 0.666894899108321
ξ[0,1),5 - 0.947054076363070 0.583539908145616 0.942251232038523
ξ[0,1),6 - 0.554407808862486 0.752693842408999 0.268055269927127
ξ[0,1),7 - - 0.247306319290994 0.033847598260145
ξ[0,1),8 - - - 0.533396994066341
ξ[0,1),9 - - - 0.802166249576074

w[0,1),i 2 spans 3 spans 4 spans 5 spans
w[0,1),1 0.295833814064987 -

294.320525140782877
0.409401392410386 0.120959377546950

w[0,1),2 0.295833814389626 0.212638937321328 0.169088088044403 0.129501619152761
w[0,1),3 0.204166185831332 294.524579768581873 -0.256628503966937 0.499999999377770
w[0,1),4 0.204166185714050 0.224144818513231 0.152773616528585 0.135185067189173
w[0,1),5 - 0.131264750487560 0.169088088166493 -0.377783860754304
w[0,1),6 - 0.223357337585522 0.169660838338642 0.132287614486551
w[0,1),7 - - 0.169662368862370 0.082280357816187
w[0,1),8 - - - 0.135083611840556
w[0,1),9 - - - 0.135703312380091

Table 4.11: Gauss points and weights for “exact” quadrature in [0, 1) of functions
S4,1 ([0, 1)).
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A solution is to perform the integrations on a two-dimensional space, instead
of computing the product of one-dimensional integrals. This requires to create
a system of equations in the form

¨
Mm

ϕ (ξ) dξ =

n
(Ξ)
Mm∑
i=1

n
(H)
Mm∑
j=1

Hw
(Ξ)
Mm,i

w
(H)
Mm,j

ϕ (ξMm,i, ηMm,j), (4.21)

∀ϕ ∈ a basis of Sp,qkΞ,kH
(Mh (Mm)), where H is the length of the edge of the

element. Algorithm 4.7 computes the unknowns solving the nonlinear system
of Algorithm 4.9. The number of DOFs can be found in this case through
Equation (3.11).

It is clear that, using the nonlinear system of equations of Equation (4.21), it
is not possible to expect exact integrations for any function ϕ in Sp,qkΞ,kH

(Mh (Mm)):
this is because the points and the weights computed with Algorithms 4.7 and 4.9
didn’t take into consideration the presence of a term φ (ξ). With this method,
however, it no more necessary to consider φ (ξ) a constant: the stiffness term,
for instance, becomes

¨
[0,1]2

φ (ξ, η)∇Ñpi (ξ, η)∇Ñqj (ξ, η) dξdη =

n
(Ξ)
Mm∑
î=1

n
(H)
Mm∑
ĵ=1

w
(Ξ)

Mm ,̂i
w

(H)

Mm,ĵ

(
φ∇Ñpi ∇Ñ

q
j

)(
ξMm ,̂i

, ηMm,ĵ

)
.

The same exact concepts here reported can be applied to NURBS’s.

4.7 Implementation of IGA
Possible algorithms for the implementation are reported and described here.

4.7.1 Providing design model
As usual, IGA works on a model which comes directly from the design phase.
The description of the model can employ many types of CAD structures, like B-
splines, NURBS’s or even T-splines. In this phase, it is important to remember
what has been pointed out in 4.4. In our model, we can completely describe a
B-spline surface by defining:

• the degree of the B-spline basis functions (in both directions) p and q;

• the number of control points in each direction n + 1 and m + 1;

• the control points P i,j which are described in the implementation as a
three-dimensional matrix P[i, j, d] where 1 ≤ i ≤ n + 1 and 1 ≤ j ≤
m + 1 indicates the indices of the point and d is the axis to which the
coordinate refers.

Once these information are defined, some functions are available to plot the
physical space. The algorithms behind these functions are reported and ex-
plained in Chapter 3.
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Algorithm 4.7 Algorithm for the computation of the weights and of the
quadrature points for the integration of a two-dimensional function ϕ ∈
Sp,qkΞ,kH

(Mh (Mm)) (continues to Algorithm 4.8).

1% computeGaussPointsWeights2D computes the Gauss in t eg ra t i on points and
2% weigths to " exac t l y " in t eg ra t e b i v a r i t e B−sp l i ne bas i s funct ions of
3% degree p in d i r ec t i on x i and q in d i r ec t i on eta at on a number ne l of
4% uniform elements where the cont inu i ty of the funct ions i s C^rXi in
5% direc t i on x i and C^rEta in d i r ec t i on eta . The domain considered i s
6% (0 ,1) .
7% Input :
8% p : max degree of the funct ions to in t e g ra t e " exac t l y " in
9% direc t i on x i ;
10% q : max degree of the funct ions to in t e g ra t e " exac t l y " in
11% direc t i on eta ;
12% k : number of elements in the x i d i r ec t i on ;
13% l : number of elements in the eta d i r ec t i on ;
14% nel : number of elements ( elements are considered a l l o f the same
15% leng th .
16% rXi : cont inu i ty i s C^rXi in d i r ec t i on x i ;
17% rEta : cont inu i ty i s C^rEta in d i r ec t i on eta .
18% Output :
19% pw: pw[ i : i +4] contains , in t h i s order , in t . po ints on x i and eta and
20% weights on x i and on eta .
21function pw = computeGaussPointsWeights2D (p , q , k , l , rXi , rEta )
22% Def in i t ion of the knot vec tors ( uniform ) .
23Xi ( 1 : p+1) = 0 ;
24j = 1 ;
25for i = p+1+1:p−rXi : p+1+(k−1)∗(p−rXi )
26Xi ( i : i+p−rXi ) = 1 . / ( k ) . ∗ j ;
27j = j +1;
28end
29Xi (p+1+(k−1)∗(p−rXi )+1:p+1+(k−1)∗(p−rXi)+1+p) = 1 ;
30Eta ( 1 : q+1) = 0 ;
31j = 1 ;
32for i = q+1+1:q−rEta : q+1+(l −1).∗(q−rEta )
33Eta ( i : i+q−rEta ) = 1 . / ( l ) . ∗ j ;
34j = j +1;
35end
36Eta (q+1+(l −1)∗(p−rEta )+1:q+1+(l −1)∗(q−rEta)+1+q) = 1 ;
37% Computation of the number of r e p e t i t i on of a knot .
38sXi = p−rXi ;
39sEta = q−rEta ;
40% Computation of the number of degrees−of−freedom .
41ndofXi = (p+1)∗k−(p−sXi+1)∗(k−1);
42ndofEta = (q+1)∗ l−(q−sEta+1)∗( l −1);
43ndof = ndofXi ∗ndofEta ;
44% computation of the number of in t eg ra t i on points to use .
45nquad = ce i l ( ndof / 2 ) ;
46% Evaluation of the number of bas i s funct ions .
47n = length (Xi)−p−2;
48m = length ( Eta)−q−2;
49% ( continues . . . )
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Algorithm 4.8 Algorithm for the computation of the weights and of the
quadrature points for the integration of a two-dimensional function ϕ ∈
Sp,qkΞ,kH

(Mh (Mm)) (continues from Algorithm 4.7).

1% ( . . . continues )
2% Exact in t eg ra t i on of the bas i s funct ions .
3% =========================================
4i n t ( (m+1)∗(n+1)) = 0 ;
5int Index = 1 ;
6for i = 0 : n
7for j = 0 :m
8% Def in i t ion of the funct ion .
9f = @(x , y ) basisFun (p , n+p+1, Xi , i , x ) . ∗ . . .
10basisFun (q , m+q+1, Eta , j , y ) ;
11% Evaluation of the " exact " i n t e g r a l .
12for xi_i = 1 : length (Xi)−1
13for eta_i = 1 : length ( Eta)−1
14i n t ( int Index ) = in t ( int Index )+ . . .
15dblquad ( f , Xi ( xi_i ) , Xi ( xi_i +1 ) , . . .
16Eta ( eta_i ) , Eta ( eta_i +1)) ;
17end
18end
19int Index = int Index+1;
20end
21end
22
23% Def in i t ion of the nonlinear system .
24F = @(x ) gaussEquations2D (p , n , Xi , q , m, Eta , int , nquad , x , k , 1/k ) ;
25
26% Set t ing the opt ions for the eva luat ion of the nonlinear system .
27opt ions = optimset ( ’TolX ’ , 1e−3, ’TolFun ’ , 1e −3 , . . .
28’MaxFunEvals ’ , 1e8 , ’ MaxIter ’ , 1e8 , ’ Display ’ , ’ on ’ ) ;
29
30% Solv ing the nonlinear system .
31% =============================
32% e x i t f l a g < 0 ind i ca t e s the procedure has f a i l e d for some reason .
33e x i t f l a g = −2;
34% In i t i a l guess of so lu t i on .
35x_0 (2 . ∗ nquad ) = 0 ;
36% I t e ra t e t i l l the system i s eva luated acceptab ly .
37while e x i t f l a g < 0
38% Define the i n i t i a l guess ( I want the components to be < 1 and >= 0) .
39for i = 1 :2∗ nquad
40x_0( i ) = rem(rand (1 , 1 ) , Xi (end)−Xi (1)+1) + Xi ( 1 ) ;
41end
42% Solut ion of the nonlinear system .
43[pw, fva l , e x i t f l a g , output ] = f s o l v e (F , x_0 , opt ions )
44end
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Algorithm 4.9 Algorithm for the computation of the value of each equation in
the nonlinear system for a possible solution x.

1function F = gaussEquations2D (p , n , Xi , q , m, Eta , int , nquad , x )
2% Creation of the matrix ( p rea l l o ca t i on ) .
3F( (m+1)∗(n+1)) = 0 ;
4
5% It e ra t i on s using ca l cu l a t i on of a l l the nonvanishing funct ions for each
6% ca l l .
7for k = 1 : nquad
8i f x ( 4 . ∗ ( k−1)+1) < 0 | | x ( 4 . ∗ ( k−1)+1) > 1 | | . . .
9x ( 4 . ∗ ( k−1)+1+1) < 0 | | x ( 4 . ∗ ( k−1)+1+1) > 1
10F = ones (1 , (m+1)∗(n+1)) ;
11return ;
12end
13
14% Computation of the knot span the candidate in t eg ra t i on point
15% belongs to .
16xi_i = findSpan (n , p , x ( 4 . ∗ ( k−1)+1) , Xi ) ;
17eta_j = findSpan (m, q , x ( 4 . ∗ ( k−1)+1+1), Eta ) ;
18% Computing a l l the nonvanishing B−sp l i ne bas i s funct ions in the
19% integra t i on point .
20Ni = basisFuns ( xi_i , x ( 4 . ∗ ( k−1)+1) , p , Xi ) ;
21Nj = basisFuns ( eta_j , x ( 4 . ∗ ( k−1)+1+1), q , Eta ) ;
22% Evaluation of the equat ions ( only one member ) .
23for a = 0 : p
24for b = 0 : q
25% Computation of the correc t index of the current
26% nonvanishing bas i s funct ions .
27i = xi_i−a ;
28j = eta_j−b ;
29% Computation of the current l i near ind ices in the F matrix .
30FIndex = i ∗(m+1)+j ;
31F( FIndex+1) = F( FIndex+1)+. . .
32x ( ( k−1)∗4+2+1)∗x ( ( k−1)∗4+3+1)∗Ni (p−a+1)∗Nj (q−b+1);
33end
34end
35end
36
37% Add a symmetry condi t ion i f needed .
38for i = (n+1)∗(m+1)+1:2∗nquad
39i f mod( i , 2) == 0
40F( i ) = x(end−ce i l ( i /2)∗3) + x( ce i l ( i /2) ) − 1 ;
41else
42F( i ) = x(end−ce i l ( i /2)∗2) + x( ce i l ( i /2)+1) − 1 ;
43end
44end
45
46% Subtract the " exact " i n t e g r a l s .
47for i = 1 : length ( i n t )
48F( i ) = F( i )− i n t ( i ) ;
49end
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• A B-spline surface defined over adequate knot vectors Xi and Eta with n+1
and m+1 control points and degrees p and q can be evaluated in [xi, eta]

T

using the function bsplineSurfPoint(n,p,Xi,m,q,Eta,P,xi,eta).

• A NURBS surface defined over adequate knot vectors Xi and Eta with
n + 1 and m + 1 control points, degrees p and q and weights defined by a
two-dimensional matrix w can be evaluated in [xi, eta]

T using the function
NURBSSurfPoint(n,p,Xi,m,q,Eta,Pw,xi,eta) where Pw are the weighted
control points.

4.7.2 Providing PDE specification and boundary condi-
tions

The problem has to be defined, comprising both the coefficients of the PDE and
the boundary conditions. This can be done by using two matrices, namely C
and D, defined as

C[i, j] =


1, if P i,j ∈ ΓD

2, if P i,j ∈ ΓN

0, otherwise
, D[i, j] =

{
0, if P i,j /∈ ΓD

gD (P i,j) , if P i,j ∈ ΓD
.

Neumann boundary conditions have to be applied in a weak sense. A function
gN (x) has to be defined and supplied to the algorithm and the control points
where a Neumann condition is imposed have to be selected in the array C. More-
over, for simplicity, a vector N is used to identify the edges on the parametric
space which have Neumann conditions applied. N is 1 when it identifies a Neu-
mann edge, where the first component relates to the edge with η = 1, the second
to the edge with ξ = 1, the third to the edge with η = 1 and the fourth to the
edge with ξ = 0. A more advanced structure for the definition of the boundary
conditions may be explored however.

4.7.3 Computation of the linear system

Homogeneous and nonhomogeneous boundary conditions can be imposed di-
rectly to the control points, removing the respective equations from the system.
This is done in Algorithm 4.10, where we take advantage of the symmetry of
the stiffness matrix. The algorithms for the computation of the integrals will be
discussed in 4.7.5. Nonhomogeneous boundary conditions can be implemented
just by subtracting a term from each element of the force vector.

4.7.4 Mesh refinement

The coarsest mesh in IGA stores all the needed information, but the mesh
(formed by the knot vectors) is likely to be not sufficient. Starting from the
coarsest mesh, it is possible to h-refine the mesh by knot insertion. Assuming
for simplicity a uniform mesh is needed, Algorithm 4.11 produces the needed
result.
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Algorithm 4.10 Computation of the force vector and of the stiffness matrix
for nonhomogeneous Dirichlet conditions.

1% Prea l loca t ion of the s t i f f n e s s matrix and of the force vector .
2S(sum(sum(C==0)) , sum(sum(C==0))) = 0 ;
3F(sum(sum(C==0))) = 0 ;
4% Indices of the matrices .
5a = 0 ;
6b = 0 ;
7for k i = 0 : n
8for l i = 0 :m
9% ki and l i are the ind ices of the f i r s t B−sp l i ne funct ion .
10% I f the node i s a D i r i ch l e t node , then sk ip to the next
11% i t e r a t i on .
12i f C( k i +1, l i +1) == 1 , cont inue ; end ;
13% Integra t ion of the homogeneous part of the force vector .
14F( a+1) = f o r c e I n t e g r a lB s p l i n e s . . .
15(n , p , Xi , m, q , Eta , P, ki , l i , f , wp_force ) ;
16% Ite ra t i on on the second B−sp l i ne bas i s funct ion .
17for kj = 0 : n
18for l j = 0 :m
19% I f the node be longs to the se t of D i r i ch l e t nodes then
20% i t i s taken into account only for the force vector .
21i f C( kj+1, l j +1) == 1
22% I f the D i r i ch l e t condi t ion i s homogeneous then
23% i t i s convenient to short−c i r cu i t e d so tha t
24% the in t e g r a l i s not computed .
25i f D( kj+1, l j +1) ~= 0
26% The term i s sub trac ted from the force vector
27% term .
28F( a+1) = F( a+1)−D( kj+1, l j + 1 ) . ∗ . . .
29s t i f f n e s s I n t e g r a l B s p l i n e s . . .
30(n , p , Xi , m, q , Eta , P, ki , l i , kj , l j , . . .
31wp_st i f fness , a_1 ) ;
32end
33cont inue ;
34end
35% Skip the terms which can be computed by e xp l o i t i n g
36% symmetry .
37i f b < a , b = b+1; cont inue ; end
38ki , kj , l i , l j
39% S t i f f n e s s term .
40S( a+1, b+1) = s t i f f n e s s I n t e g r a l B s p l i n e s . . .
41(n , p , Xi , m, q , Eta , P, ki , l i , kj , l j , . . .
42wp_st i f fness , a_1 ) ;
43b = b+1;
44end
45end
46a = a+1;
47b = 0 ;
48end
49end
50
51% Complete the lower t r i an g l e ( symmetry ) .
52for i = 1 : length (S (1 , : ) )
53for j = 1 : i
54S( i , j ) = S( j , i ) ;
55end
56end
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Algorithm 4.11 Process of refinement which produces a uniform mesh with
(c−a)/b elements.

1for i = a : b : c
2k = findSpan (n , p , i , Xi ) ;
3i f Xi (k+1) ~= i
4[ n , Xi , m, Eta , P] = . . .
5sur fKnotIns (n , p , Xi , m, q , Eta , . . .
6P, 0 , i , k , 0 , 1 ) ;
7end
8
9k = findSpan (m, q , i , Eta ) ;
10i f Eta (k+1) ~= i
11[ n , Xi , m, Eta , P] = . . .
12sur fKnotIns (n , p , Xi , m, q , Eta , . . .
13P, 1 , i , k , 0 , 1 ) ;
14end
15end

Algorithm 4.12 Algorithm for the computation of the integral necessary to
build the stiffness matrix using the concepts reported in [37] (adaptive recursive
Simpson’s rule).

1function s = s t i f f n e s s I n t e g r a l B s p l i n e s (n , p , Xi , m, q , . . .
2Eta , P, ki , l i , kj , l j , pw, a_1)
3s = 0 ;
4% According to the proper t i e s of the B−sp l i ne bas i s funct ions , each
5% funct ion i s nonzero only in a s p e c i f i e d i n t e r v a l . This property i s u s e fu l
6% in order to reduce the domain of computation of the i n t e g r a l .
7a = max( [ ( k i +1) , ( k j +1 ) ] ) ;
8b = min ( [ ( k i+p+1+1), ( k j+p+1+1)])−1;
9c = max( [ ( l i +1) , ( l j +1 ) ] ) ;
10d = min ( [ ( l i+q+1+1), ( l j+q+1+1)])−1;
11% The in t e g r a l i s d iv ided over the s i n g l e elements as along the edges the
12% degree of cont inu i ty i s not known : i t could lead to a wrong computation
13% of the i n t e g r a l .
14for xi_i = a : b
15for eta_i = c : d
16s = s+dblquad (@(x , y ) s t i f f n e s s I n t e g r a ndB sp l i n e s . . .
17(n , p , Xi , m, q , Eta , P, x , y , . . .
18ki , l i , kj , l j , a_1) , Xi ( xi_i ) , Xi ( xi_i +1 ) , . . .
19Eta ( eta_i ) , Eta ( eta_i +1)) ;
20end
21end

4.7.5 Implementations of integration in IGA
According to what has been said, two algorithms for the integration for both
the stiffness matrix and the force vector are reported: Algorithms 4.12 and 4.14
integrate using adaptive recursive Simpson’s rule (see [37]) and Algorithms 4.13
and 4.15 integrates using what has been proposed in 4.6. The integrands are
reported in Algorithms 4.16 and 4.18.

A possible performance boost could be achieved pre-computing all the eval-
uations of the B-spline basis functions and of the derivatives on all the Gauss
nodes.

The Neumann term has to be computed in forceIntegralBspline(...) method:
the algorithms 4.19 and 4.20 shows a possible way of doing this.
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Algorithm 4.13 Algorithm for the computation of the integral necessary to
build the stiffness matrix using the concepts of 4.6.

1s = 0 ;
2% Ite ra t i on over a l l the couples of in t eg ra t i on nodes .
3for i = 1 : 4 : length (pw)−3
4s = s+pw( i +2)∗pw( i +3)∗ s t i f f n e s s I n t e g r a ndB sp l i n e s . . .
5(n , p , Xi , m, q , Eta , P, pw( i ) , pw( i +1 ) , . . .
6ki , l i , kj , l j , a_1 ) ;
7end

Algorithm 4.14 Algorithm for the computation of the integral necessary to
build the force vector using the concepts reported in [37] (adaptive recursive
Simpson’s rule).

1function F = f o r c e I n t e g r a lB s p l i n e s . . .
2(n , p , Xi , m, q , Eta , P, ki , l i , f , g_N, a_1 , pw, N)
3F = 0 ;
4for xi_i = k i +1: k i+p+1
5for eta_i = l i +1: l i+q+1
6F = F+ . . .
7dblquad (@(x , y ) ( f o r c e In t eg r andBsp l i n e s . . .
8(n , p , Xi , m, q , Eta , P, x , y , ki , l i , f ) ) , . . .
9Xi ( xi_i ) , Xi ( xi_i +1 ) , . . .
10Eta ( eta_i ) , Eta ( eta_i+1) , 1e−5);
11end
12end

Algorithm 4.15 Algorithm for the computation of the integral necessary to
build the force vector using the concepts of 4.6.

1F = 0 ;
2for i = 1 : 4 : length (pw)−3
3F = F+pw( i +2)∗pw( i +3)∗ f o r c e In t eg r andBsp l i n e s . . .
4(n , p , Xi , m, q , Eta , P, pw( i ) , pw( i +1) , ki , l i , f ) ;
5end
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Algorithm 4.16 Algorithm for the computation of the integrand for the stiff-
ness term (continues to Algorithm 4.17).

1function s = s t i f f n e s s I n t e g r a ndB sp l i n e s (n , p , Xi , m, q , . . .
2Eta , P, xi , eta , ki , l i , kj , l j , a_1)
3% Prea l loca t ion .
4s ( length ( x i ) ) = 0 ;
5o lde ta = eta ;
6% Ite ra t i on on a l l the requested va lues on which to eva l the integrand .
7for l = 1 : length ( x i )
8moveForward = f a l s e ;
9moveXi = f a l s e ;
10moveMax = 100 ;
11moveCurrent = 0 ;
12eta = o lde ta ;
13Jx = 0 ;
14rcond = 1e−5;
15% I want to avoid the determinant of the Jacobian matrix to vanish .
16% This happens when a s i n gu l a r i t y i s found and i t i s not po s s i b l e
17% to t rans l a t e the funct ion to the parametric domain . In t h i s case
18% I simply move by a smal l percentage the point in which the
19% integrand i s eva luated .
20while Jx == 0
21% Determination of the d e r i v a t i v e s . This ca l cu l a t i on invo l v e s
22% the ca l cu l a t i on of the value of the b s i s funct ions in the
23% points and of the knot spans in which the points are loca ted .
24% I can re−use these va lues l a t e r on , avoiding new evauations .
25[SKL, eXi , eEta , spanxi , spaneta ] = . . .
26b sp l i n eSu r fDe r i v s (n , p , Xi , m, q , Eta , P, x i ( l ) , eta , 1 ) ;
27% Def in i t ion of the jacobian matrix .
28DxDxi = [SKL(2 , 1 , 1 ) , SKL(1 , 2 , 1 ) ; SKL(2 , 1 , 2 ) , SKL(1 , 2 , 2 ) ] ;
29% Evaluate the Jacobian .
30Jx = det (DxDxi ) ;
31i f Jx == 0 , Jx , end ;
32% I f the Jacobian i s 0 , the matrix i s s ingu lar and there fo re not
33% in v e r t i b l e . This i s not acceptab le as I need i t to be
34% in v e r t i b l e .
35i f Jx ~= 0 , break ; end ;
36% ( continues . . . )
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Algorithm 4.17 Algorithm for the computation of the integrand for the stiff-
ness term (continues from Algorithm 4.16).

1% ( continues . . . )
2% Check to see i f we s t i l l have to move in the same d i rec t i on .
3i f moveXi == true
4% I f po s s i b l e move back on x i in the parametric space .
5i f moveForward == true && xi ( l ) >= Xi (end)−rcond
6moveForward = f a l s e ;
7end
8i f moveForward == f a l s e && xi ( l ) <= Xi(1)+rcond
9moveForward = true ;
10end
11else
12% I f po s s i b l e move back on eta in the parametric space .
13i f moveForward == true && eta >= Eta (end)−rcond
14moveForward = f a l s e ;
15end
16i f moveForward == f a l s e && eta <= Eta(1)+rcond
17moveForward = true ;
18end
19end
20moveCurrent = moveCurrent+1;
21i f moveCurrent >= moveMax , moveXi = ~moveXi ; end ;
22i f moveXi == true
23i f moveForward == f a l s e , x i ( l ) = x i ( l )−rcond ;
24else x i ( l ) = x i ( l )+rcond ; end ;
25else
26i f moveForward == f a l s e , eta = eta−rcond ;
27else eta = eta+rcond ; end ;
28end
29end
30% Compute the inverse of the jacobian matrix .
31DxiDx = inv (DxDxi ) ;
32dki = ki−spanxi+p+1;
33d l i = l i−spaneta+q+1;
34dkj = kj−spanxi+p+1;
35d l j = l j−spaneta+q+1;
36% According to the l o c a l support property of the B−sp l i ne funct ions
37% they are zero outs ide t h e i r l o c a l support .
38i f dki>0 && dki<=p+1 && dl i >0 && dl i<=q+1
39dNidxi = eXi (2 , dki ) . ∗ eEta (1 , d l i ) ;
40else dNidxi = 0 ; end ;
41i f d l i >0 && dl i<=q+1 && dki>0 && dki<=p+1
42dNideta = eEta (2 , d l i ) . ∗ eXi (1 , dki ) ;
43else dNideta = 0 ; end ;
44i f dkj>0 && dkj<=p+1 && dl j >0 && dl j<=q+1
45dNjdxi = eXi (2 , dkj ) . ∗ eEta (1 , d l j ) ;
46else dNjdxi = 0 ; end ;
47i f d l j >0 && dl j<=q+1 && dkj>0 && dkj<=p+1
48dNjdeta = eEta (2 , d l j ) . ∗ eXi (1 , dkj ) ;
49else dNjdeta = 0 ; end ;
50% Def in i t ion of the grad ients .
51gradNi = [ dNidxi ; dNideta ] ;
52gradNj = [ dNjdxi ; dNjdeta ] ;
53% Evaluation of the integrand .
54s ( l ) = Jx . ∗ 1 . ∗ ( DxiDx ’ ∗ gradNi ) ’ ∗ (DxiDx ’ ∗ gradNj ) . ∗ . . .
55a_1(SKL(1 , 1 , 1 ) , SKL(1 , 1 , 2 ) ) ;
56end
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Algorithm 4.18 Algorithm for the computation of the integrand necessary to
build the force vector.

1function F = fo r c e In t eg r andBsp l i n e s . . .
2(n , p , Xi , m, q , Eta , P, xi , eta , ki , l i , f )
3% Prea l loca t ion .
4F( length ( x i ) ) = 0 ;
5for l = 1 : length ( x i )
6% Determination of the d e r i v a t i v e s .
7[SKL, eXi , eEta , spanxi , spaneta ] = . . .
8b sp l i n eSu r fDe r i v s (n , p , Xi , m, q , Eta , P, x i ( l ) , eta , 1 ) ;
9% Def in i t ion of the jacobian matrix .
10DxDxi = [SKL(2 , 1 , 1 ) , SKL(1 , 2 , 1 ) ; SKL(2 , 1 , 2 ) , SKL(1 , 2 , 2 ) ] ;
11% Evaluate the Jacobian .
12Jx = det (DxDxi ) ;
13dki = ki−spanxi+p+1;
14d l i = l i−spaneta+q+1;
15i f dki>0 && dki<=p+1 && dl i >0 && dl i<=q+1
16Nip = eXi (1 , dki ) . ∗ eEta (1 , d l i ) ;
17else Nip = 0 ; end ;
18% Integrand .
19F( l ) = Jx . ∗ f (SKL(1 , 1 , 1 ) , SKL(1 , 1 , 2 ) ) . ∗ Nip ;
20end
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Algorithm 4.19 Computation of the term of the force vector taking into ac-
count the Neumann conditions applied to the boundaries.

1function F = f o r c e I n t e g r a lB sp l i n e s 0 2 . . .
2(n , p , Xi , m, q , Eta , P, ki , l i , f , g_N, a_1 , pw, N)
3F = 0 ;
4% According to the proper t i e s of the B−sp l i ne bas i s funct ions , each
5% funct ion i s nonzero only in a s p e c i f i e d i n t e r v a l . This property i s u s e fu l
6% in order to reduce the domain of computation of the i n t e g r a l .
7% The in t e g r a l i s d iv ided over the s i n g l e elements as along the edges the
8% degree of cont inu i ty i s not known : i t could lead to a wrong computation
9% of the i n t e g r a l .
10for xi_i = k i +1: k i+p+1
11for eta_i = l i +1: l i+q+1
12F = F+ . . .
13dblquad (@(x , y ) ( f o r c e In t eg r andBsp l i n e s . . .
14(n , p , Xi , m, q , Eta , P, x , y , ki , l i , f ) ) , . . .
15Xi ( xi_i ) , Xi ( xi_i +1 ) , . . .
16Eta ( eta_i ) , Eta ( eta_i+1) , 1e−5);
17end
18end
19% N store s the d e f i n i t i on of which edges of the parametric domain has to be
20% considered part of the Neumann boundary .
21for i = 1 : length (N)
22i f N( i ) == 0 , cont inue ; end ;
23% Determine the domain of the l i n e i n t e g r a l to compute .
24switch i
25case 1
26i f l i ~=0, cont inue ; end ;
27A = [ Xi ( 1 ) , Eta ( 1 ) ] ; B = [ Xi (end ) , Eta ( 1 ) ] ;
28domain (1) = Xi ( k i +1);
29domain (2) = Xi ( k i+p+2);
30case 2
31i f k i~=n , cont inue ; end ;
32A = [ Xi (end ) , Eta ( 1 ) ] ; B = [ Xi (end ) , Eta (end ) ] ;
33domain (1) = Eta ( l i +1);
34domain (2) = Eta ( l i+q+2);
35case 3
36i f l i ~=m, cont inue ; end ;
37A = [ Xi ( 1 ) , Eta (end ) ] ; B = [ Xi (end ) , Eta (end ) ] ;
38domain (1) = Xi ( k i +1);
39domain (2) = Xi ( k i+p+2);
40case 4
41i f k i ~=0, cont inue ; end ;
42A = [ Xi ( 1 ) , Eta ( 1 ) ] ; B = [ Xi ( 1 ) , Eta (end ) ] ;
43domain (1) = Eta ( l i +1);
44domain (2) = Eta ( l i+q+2);
45end
46% Computation of the i n t e g r a l .
47F = F+quad(@(x ) ( neumannIntegrand (n , p , Xi , m, q , Eta , . . .
48P, ki , l i , a_1 , g_N, x , A, B ) ) , . . .
49domain (1 ) , domain ( 2 ) ) ;
50end
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Algorithm 4.20 Integrand of the Neumann term.

1function N = neumannIntegrand (n , p , Xi , m, q , Eta , P, ki , l i , . . .
2a_1 , g_N, t , A, B)
3N( length ( t ) ) = 0 ;
4for i = 1 : length ( t )
5% Def in i t ion of the map.
6ch i = (1− t ( i ) ) . ∗A + t ( i ) . ∗B;
7% Determination of the d e r i v a t i v e s .
8[SKL, eXi , eEta , spanxi , spaneta ] = . . .
9b sp l i n eSu r fDe r i v s (n , p , Xi , m, q , Eta , P, ch i ( 1 ) , ch i ( 2 ) , 1 ) ;
10% Def in i t ion of the jacobian matrix .
11DxDxi = [SKL(2 , 1 , 1 ) , SKL(1 , 2 , 1 ) ; SKL(2 , 1 , 2 ) , SKL(1 , 2 , 2 ) ] ;
12dki = ki−spanxi+p+1;
13d l i = l i−spaneta+q+1;
14i f dki>0 && dki<=p+1 && dl i >0 && dl i<=q+1
15Nip = eXi (1 , dki ) . ∗ eEta (1 , d l i ) ;
16else
17Nip = 0 ;
18end
19N( i ) = a_1(SKL(1 , 1 , 1 ) , SKL(1 , 1 , 2 ) ) . ∗ . . .
20g_N(SKL(1 , 1 , 1 ) , SKL(1 , 1 , 2 ) ) . ∗ . . .
21Nip . ∗norm(DxDxi∗(−A+B) ’ . /norm(−A+B) ) ;
22end
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Chapter 5

Numerical examples

5.1 Thermal conduction

Let u (x) be the temperature field, f (x) the heat supply per unit volume and
κ (x) the conductivity matrix. The steady state thermal conduction problem is
the problem of finding the temperature field u (x) given that

∇ (κ (x)∇u (x)) = f (x) , ∀x ∈ Ω, given f : Ω→ R, u : Ω̄→ R
u (x) = gD (x) , ∀x ∈ ΓD, gD : ΓD → R

κ (x)
∂u

∂ν
(x) = gN (x) , ∀x ∈ ΓN , gN : ΓN → R

.

The application of the method introduced in 1.4-1.4.4 leads to the problem
of finding the function u (x) such that

a (υ, ϕ) = l (ϕ) , ∀ϕ ∈ H1
0 (Ω) , υ ∈ H1

0 (Ω)

a (υ, ϕ) =
˜

Ω
κ∇υ∇ϕdx, υ ∈ H1

0 (Ω) , ∀ϕ ∈ H1
0 (Ω)

l (ϕ) =
˜

Ω
(fϕ− κ∇γ∇ϕ) dx−

´
ΓD

κgNϕdΓ, ∀ϕ ∈ H1
0 (Ω)

υ (x) = 0, ∀x ∈ ΓD

γ (x) = gN (x) , ∀x ∈ ΓD, gD : ΓD → R

κ (x)
∂ (υ + γ)

∂ν
(x) = gN (x) , ∀x ∈ ΓN , gN : ΓN → R

u (x) = υ (x) + γ (x) , ∀x ∈ Ω

.

5.1.1 FEM solution on square plate

Let’s consider some different problems on a square plate. The first problem (5.1)
is a thermal problem with conductivity matrix κ = Isize(κ), domain ΩS = (0, 1)

2,
gD = 0 and f = 1:{

∇ (∇u (x)) = 1, ∀x ∈ ΩS , given u : Ω̄S → R
u (x) = 0, ∀x ∈ ∂ΩS

. (5.1)

The first process to begin when solving this problem with FEM, after the deriva-
tion of the weak formulation and the application of the Galerkin method, is to
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Figure 5.1: Triangular mesh on the rectangular plate for the solution of a simple
thermal problem.

create some kind of mesh on the domain of interest, which is described by a
CAD model, using splines for instance. Let’s consider a simple object at the
beginning: a square plate. A possible mesh is given in Figure 5.1. The creation
of the stiffness matrix and of the force vector and the solution of the linear
system leads to a solution exact at the nodes (see Figure 5.2).

The second problem (5.7) is a thermal problem with conductivity matrix
κ = Isize(κ), domain ΩS = (0, 1)

2 and f = 1:
∇ (∇u (x)) = 1, ∀x ∈ ΩS , given u : Ω̄S → R
u (x) = 1, ∀x ∈ ΓD,S =

{
x ∈ ΩS |x = [0, y]

T ∧ x = [1, y]
}

u (x) = 0, ∀x ∈ ∂ΩS\ΓD,S

. (5.2)

The third problem (5.3) is a thermal problem with conductivity matrix κ =

Isize(κ), domain ΩS = (0, 1)
2 and f = x:

∇ (∇u (x)) = 20x, ∀x ∈ ΩS , given u : Ω̄S → R
u (x) = 1, ∀x ∈ ΓD,S

u (x) = 0, ∀x ∈ ∂ΩS\ΓD,S
. (5.3)

The fourth problem is:
∇ (2xI2∇u (x)) = 20x, ∀x ∈ ΩS , given u : Ω̄S → R
u (x) = 1, ∀x ∈ ΓD,S

u (x) = 0, ∀x ∈ ∂ΩS\ΓD,S
. (5.4)

The solutions to the problems (5.2), (5.3) and (5.4) can be found in Figure
5.3.
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Figure 5.2: Approximated solution of a thermal problem with FEM on the
square plate using a mesh with 2705 nodes.

Figure 5.3: Approximated solutions of problems (5.2), (5.3) and (5.4) found
using FEM with a mesh with 2705 nodes.
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Figure 5.4: Representations of the approximated solutions of the problem (5.1)
calculated using IGA, with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

Figure 5.5: Representations of the approximated solutions of the problem (5.2)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

5.1.2 IGA solution on square plate

The results of the analysis of the problems (5.1) to (5.4) with IGA can be seen
in Figures from 5.4 to 5.7.

A comparison of FEM and IGA solutions using the same number of nodes
is reported in Figure 5.8.

5.1.3 FEM solution on a plate with hole

Now, it is interesting to consider some more complex geometries. Let’s take,
for instance, an approximation of the plate with a hole in the corner described
using a B-spline surface, like the one represented in Figure 3.18. It is no more
possible to keep the exact geometry when trying to analyze the domain with
FEM. In this case, in fact, the “circular” hole needs to be approximated with
a polygonal shape (linear elements are used in this case). The refinement of
the mesh can represent the domain with higher precision, and this is useful in
this case, as it can be seen in Figure 5.9. The domain ΩP is described using a
B-spline surface P (ξ, η) where the parametric space is always the unit square
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Figure 5.6: Representations of the approximated solutions of the problem (5.3)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

Figure 5.7: Representations of the approximated solutions of the problem (5.4)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

Figure 5.8: Approximated solutions using FEM with 25 nodes on the left, IGA
with 25 nodes on the right.
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Figure 5.9: Details of meshes for the plate with hole.
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[0, 1]
2, so

ΩP =
{

(x, y) | (x, y) = P (ξ, η) , ∀ (ξ, η) ∈ [0, 1]
2
}
.

We consider again four problems:{
∇ (∇u (x)) = 1, ∀x ∈ ΩP , given u : Ω̄P → R
u (x) = 0, ∀x ∈ ∂ΩP

, (5.5)


∇ (∇u (x)) = 1, ∀x ∈ ΩP , given u : Ω̄P → R
u (x) = 1, ∀x ∈ ΓD,P

u (x) = 0, ∀x ∈ ΩP \ΓD,P
, (5.6)


∇ (∇u (x)) = x, ∀x ∈ ΩP , given u : Ω̄P → R
u (x) = 1, ∀x ∈ ΓD,P

u (x) = 0, ∀x ∈ ΩP \ΓD,P
, (5.7)


∇ (xI2∇u (x)) = 1, ∀x ∈ ΩP , given u : Ω̄P → R
u (x) = 1, ∀x ∈ ΓD,P

u (x) = 0, ∀x ∈ ΩP \ΓD,P
, (5.8)

where
ΓD,P =

{
x ∈ ΩP |x = [−4, y]

T ∧ x = [x, 4]
}
.

The solutions to the problems (5.5), (5.6), (5.7) and (5.8) can be found in Figure
5.10.

5.1.4 IGA solution on a plate with hole
When the plate with hole is described using B-spline functions and IGA is ap-
plied, there is no need to approximate the boundary. The effect of h-refinement
can be seen in Figures 5.20 and 5.21, and it can be seen that in every mesh, in-
cluding the coarsest, the domain is represented exactly as it was provided. The
solutions to the problems (5.5), (5.6), (5.7) and (5.8) can be found in Figures
from 5.11 to 5.14.

A comparison of the approximated solutions found using FEM and IGA
on the square plate with hole can be found in Figure 5.15. In this case, the
advantage of using IGA over FEM can be clearly seen.

5.1.5 IGA on ΩP with optimized Gauss quadrature
The results of the analysis of the problems (5.5) to (5.8) with IGA can be seen
in Figures from 5.16 to 5.19.

5.1.6 Effects of h-refinement
Algorithms 4.3 and 4.4, which performs the knot insertion, can be used to refine
a mesh on an object. This is equivalent to the h-refinement in FEM, so that it
can be used to obtain a more precise solution. An example of h-refinement with
B-splines functions can be found in Figure 5.20: a uniform mesh is uniformly
refined in order to obtain a more precise approximation of the exact solution.
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Figure 5.10: Approximated solutions of the problems (5.5) on the top left, (5.6)
on the top right, (5.7) on the bottom left and (5.8) on the bottom right, using
linear elements in FEM analysis with a mesh with 2609 nodes.

Figure 5.11: Representations of the approximated solution of the problem (5.5)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.
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Figure 5.12: Representations of the approximated solution of the problem (5.6)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

Figure 5.13: Representations of the approximated solution of the problem (5.7)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

Figure 5.14: Representations of the approximated solution of the problem (5.8)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.
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Figure 5.15: Approximated solutions using FEM with 36 nodes on the left, IGA
with 35 nodes on the right.

Figure 5.16: Representations of the approximated solution of the problem (5.5)
calculated using IGA with optimized Gauss two-dimensional integration, with
a mesh of 4 elements in each direction.

Figure 5.17: Representations of the approximated solution of the problem (5.6)
calculated using IGA with optimized Gauss two-dimensional integration, with
a mesh of 4 elements in each direction.

University of Padua Faculty of Engineering



CHAPTER 5. NUMERICAL EXAMPLES 175

Figure 5.18: Representations of the approximated solution of the problem (5.7)
calculated using IGA with optimized Gauss two-dimensional integration, with
a mesh of 4 elements in each direction.

Figure 5.19: Representations of the approximated solution of the problem (5.8)
calculated using IGA with optimized Gauss two-dimensional integration, with
a mesh of 4 elements in each direction.
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Figure 5.20: Process of h-refinement on ΩS for the problem (5.4).
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Figure 5.21: Process of h-refinement on ΩP for the problem (5.8).
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Figure 5.22: h-refinement of domain Ω1.

5.1.7 IGA solution on a more complex domain
By using IGA, it is possible to analyze even more complex geometries. Let’s
consider then problem (5.9){

∇ (∇u (x)) = 1, ∀x ∈ Ω1, given u : Ω̄1 → R
u (x) = 0, ∀x ∈ ∂Ω1

, (5.9)

where Ω1 is represented in Figure 5.22 in its coarsest mesh and its refinements.
In this case, IGA provides the solution (mesh of Figure 5.22c is considered)

depicted in Figure 5.23.
Another interesting problem to test on this complex domain is the one re-

ported below:
∇ (∇u (x)) = 1, ∀x ∈ Ω1, given u : Ω̄1 → R
u (x) = 0, ∀x ∈ ∂Ω1\ΓD
u (x) = 1, ∀x ∈ ΓD = {x|x = x̃ (ξ, η) , η = 1}

. (5.10)

The solution is illustrated in Figure 5.24, and it can be seen that the Dirichlet
condition is exactly satisfied on the boundary.

IGA can also work on three-dimensional surfaces, consider in fact the case
of a problem similar to (5.9) such as:{

∇ (∇u (x)) = 1, ∀x ∈ Ω2, given u : Ω̄2 → R
u (x) = 0, ∀x ∈ ∂Ω2

. (5.11)
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Figure 5.23: Solution of problem (5.11) found by using IGA.

Refinements and the solution over a mesh are reported in Figure 5.26 and
5.25.

5.1.8 Combination of Dirichlet and Neumann boundary
conditions

It is possible to introduce Neumann boundary conditions in the problems already
proposed. The three problems are:

∇ (∇u (x)) = 1, ∀x ∈ ΩS , given u : Ω̄S → R
u (x) = 0, ∀x ∈ ΓD,0

u (x) = 1, ∀x ∈ ΓD,1

u (x) = 2, ∀x ∈ ΓD,2
∂u

∂ν
= gN , ∀x ∈ ΓN

, (5.12)



∇ (∇u (x)) = 1, ∀x ∈ ΩP , given u : Ω̄P → R
u (x) = 0, ∀x ∈ ΓD,0

u (x) = 1, ∀x ∈ ΓD,1

u (x) = 2, ∀x ∈ ΓD,2
∂u

∂ν
= gN , ∀x ∈ ΓN

, (5.13)
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Figure 5.24: Solution of problem (5.10) found by using IGA.

University of Padua Faculty of Engineering



CHAPTER 5. NUMERICAL EXAMPLES 181

Figure 5.25: h-refinement of domain Ω2.

Figure 5.26: Solution of problem (5.11) found by using IGA.
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

∇ (∇u (x)) = 1, ∀x ∈ Ω1, given u : Ω̄1 → R
u (x) = 0 ∀x ∈ ΓD,0

u (x) = 1, ∀x ∈ ΓD,1

u (x) = 2, ∀x ∈ ΓD,2
∂u

∂ν
= gN , ∀x ∈ ΓN

, (5.14)

where
ΓD,0 = {x|x̃ (ξ, η) = x, ξ = 0, η ∈ [0, 1]} ,

ΓD,1 = {x|x̃ (ξ, η) = x, ξ = 1, η ∈ [0, 1]} ,

ΓD,2 = {x|x̃ (ξ, η) = x, ξ ∈ [0, 1] , η = 1} ,

ΓN = {x|x̃ (ξ, η) = x, ξ ∈ [0, 1] , η = 0} .

In the figures from (5.27) to (5.29) the solutions for h = 0 can be seen and in
the figures from (5.30) to (5.32) h = 1 is illustrated. Tests with a nonconstant
function for Neumann conditions gN (x) = x is also reported in the figure from
(5.33) to (5.35).

University of Padua Faculty of Engineering



CHAPTER 5. NUMERICAL EXAMPLES 183

Figure 5.27: Solution of the problem (5.12) on the domain ΩS with gN = 0.
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Figure 5.28: Solution of the problem (5.13) on the domain ΩP with gN = 0.
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Figure 5.29: Solution of the problem (5.14) on the domain Ω1 with gN = 0.
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Figure 5.30: Solution of the problem (5.12) on the domain ΩS with gN = 1.
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Figure 5.31: Solution of the problem (5.13) on the domain ΩP with gN = 1.
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Figure 5.32: Solution of the problem (5.14) on the domain Ω1 with gN = 1.
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Figure 5.33: Solution of the problem (5.12) on the domain ΩS with gN = 9x.
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Figure 5.34: Solution of the problem (5.13) on the domain ΩP with gN = 9x.
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Figure 5.35: Solution of the problem (5.14) on the domain Ω1 with gN = 9x.
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Appendix A

Notes of functional analysis

A.1 Linear spaces

A.1.1 Real and complex linear space
Definition A.1. Let B = R or B = C. A nonempty abstract set V endowed
with two binary operations + : V ×V → V (called addition) and · : B×V → V
(called multiplication by scalar) is (real or complex) linear space if and only if
the following ten conditions are satisfied for all a, b ∈ B and u, v, w ∈ V .

1. v + w ∈ V (closure of V under addition);

2. u+ (v + w) = (u+ v) + w (associativity of addition in V );

3. there exists a neutral element 0 in V such that for all elements v ∈ V ,
v + 0 = v;

4. for all v ∈ V there exists an element w ∈ V such that v + w = 0;

5. v + w = w + v (commutativity);

6. a · v ∈ V (closure of V under multiplication by a scalar);

7. a · (b · v) = (ab) · v (associativity of scalar multiplication);

8. if 1 denotes the multiplicative identity of B then 1 · v = v (neutrality of
1);

9. a · (v + w) = a · v + a · w (distributivity with respect to addition);

10. (a+ b) · v = a · v + b · v (distributivity with respect to scalar addition).

A.1.2 Linear and bilinear forms
Linear forms are linear operators which are commonly used in Finite Element
analysis. To define them we define first a linear transformation, then the linear
operator and lastly the linear functional (or linear form).

Definition A.2. Let V and W be linear spaces over the same field F . A linear
transformation is a function f : V →W such that:
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• f (v + w) = f (v) + f (w) , ∀v, w ∈ V ;

• f (λv) = λf (v) , ∀v ∈ V, λ ∈ F.

Definition A.3. Let f be a linear transformation f : V → W , where V and
W are linear spaces over the field F . If V = W then the linear transformation
is called linear operator.

Definition A.4. Let V be a linear space over the field F . The function f :
V → F is called linear form. The space of all linear forms over the space V is
called dual space and denoted with V ′.

We need to define the dual space as well:

Definition A.5. Let V be a real or complex linear space of dimension n and
V = {v1, v2, . . . , vn} a basis of V . The basis V ′ = {v′1, v′2, . . . , v′n} of the space
V ′ is said to be the dual basis of V if fi (vj) = δij , ∀1 ≤ i, j ≤ n.

Another important linear form frequently used in Finite Element analysis is
the bilinear form.

Definition A.6. Let V , W and Z be linear spaces over the field F . A bilinear
map is a function f : V ×W → Z such that:

• the map x 7→ f (x, y) from V to Z is a linear ∀y ∈W ;

• the map y 7→ f (x, y) from W to Z is linear ∀x ∈ V .

Definition A.7. Let V be a linear spaces on a field F . A bilinear form is a
bilinear map f : V × V → F .

Similarly, we can give the definition of a bilinear form:

Definition A.8. A bilinear form on a linear space V over a field V is a bilinear
mapping f : V × V → F , such that:

1. f (v + v′, w) = f (v, w) + f (v′, w) , ∀v, v′, w ∈ V ;

2. f (w, v + v′) = f (w, v) + f (w, v′) , ∀v, v′, w ∈ V ;

3. f (λv,w) = f (v, λw) = λf (v, w) , ∀v, w ∈ V .

There are some important properties used in the rest of the document for
the bilinear form:

Definition A.9. Let V be a real Hilbert space a : V × V → R a bilinear form
and A : V → V ′ a linear operator related to a (·, ·) via

(Au) (v) = 〈Au, v〉 = a (u, v) , ∀u, v ∈ V,

we say that:

1. a is bounded if there exists a constant Ca such that |a (u, v)| ≤ Ca ‖u‖ ‖v‖
for all u, v ∈ V ;

2. a is V-elliptic if there exists a constant C̃a > 0 such that a (u, v) ≥ C̃a ‖v‖2V
for all v ∈ V .
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A.2 Normed spaces

A.2.1 Open and closed sets
Some definitions regarding the set theory are necessary.

Definition A.10. Let V be a normed space and S ⊂ V a subset of V . We
say that S is bounded in V if there exists a positive constant c > 0 such that
‖x‖V ≤ c for all x ∈ S.

Definition A.11. Let V be a normed space with the norm ‖·‖V , g ∈ V and
0 < r ∈ R. By the open ball with the center g and radius r we mean the set

B (g, r) = {v ∈ V, ‖v − g‖V < r} .

Definition A.12. Let V be a normed space and S ⊂ V . The set S is open in
V if for every g ∈ S there exists r > 0 such that B (g, r) ⊂ S. The set S is
closed if its complement V \ S is open.

A.2.2 Lp-spaces
These spaces have are very important for the solution of PDEs. These spaces
were defined by Henri Léon Lebesgue who generalized the concept of Riemann
integral. The entire concept of Lebesgue integral is based on the Lebesgue
measure: we shall say that a set Ω0 has zero Lebesgue measure in Rd if its
d-dimensional measure is zero. For instance, the d-dimensional measure of a set
Ω0 consisting of a finite number of points or even of a countable infinite set of
points, such as the set of rational numbers, is zero if d ≥ 1.

Definition A.13. Let f : Ω → R, where Ω ⊂ Rd is an open measurable set.
The Lebesgue integral of f over Ω is invariant with respect to the values of the
function in zero-measure subsets of Ω. Soˆ

Ω

f (x) dx =

ˆ
Ω\Ω0

f (x) dx, ∀Ω0 ⊂ Ω| |Ω0| = 0.

Because of this definition, the Riemann integral and the Lebesgue integral
differ.

Definition A.14. Let Ω ⊂ Rd be an open set. Consider the linear space V of
measurable functions defined in Ω. For every 1 ≤ p <∞ we define the Lp-norm
in V as

‖f‖p =

(ˆ
Ω

|f (x)|p dx
)1

p
.

The L∞-norm in V is defined as

‖f‖∞ = ess
(
sup
x∈Ω
|f (x)|

)
,

where the essential supremum is defined as

ess
(
sup
x∈Ω

g (x)

)
= inf
Z⊂Ω,|Z|=0

(
sup
Ω\Z

g (x)

)
.
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The spaces Lp (Ω) are defined as

Lp (Ω) =
{
f ∈ V : ‖f‖p <∞

}
, ∀p : 1 ≤ p <∞

and
L∞ (Ω) =

{
f ∈ V : ess

(
sup
x∈Ω
|f (x)|

)
<∞

}
.

A.3 Inner product spaces
An inner product space is a linear space equipped with an inner product 〈·, ·〉V :
V × V → C, where V is an inner product space. This structure associates each
pair of vectors of the space with a scalar quantity known as inner product. An
inner product space is also called a pre-Hilbert space. More formally:

Definition A.15. Let V be a real or complex linear space. An inner product
in V is any function 〈·, ·〉V : V × V → C with the following properties:

1. for any u ∈ V , 〈u, u〉V ≥ 0 and moreover 〈u, u〉V = 0 if and only if u = 0;

2. for any u, v ∈ V , 〈u, v〉V = 〈v, u〉V ;

3. for any u, v, w ∈ V and all a, b ∈ C we have

〈au+ bv, w〉V = a 〈u,w〉V + b 〈v, w〉V .

An inner product space V is a linear space over C with an inner product defined
on it.

A.3.1 Hilbert spaces
For the definition of the Hilbert space it is necessary to define the Cauchy
sequence first.

Definition A.16. Let V be a normed space. A sequence {vn}∞n=1 ⊂ V is a
Cauchy sequence if for every R 3 ε > 0 there exists a natural number l such
that for all natural numbers m,n > l

‖vm − vn‖V < ε.

Definition A.17. A normed space V (and so an inner product) is complete if
every Cauchy sequence in V is a convergent sequence.

Definition A.18. Every complete inner product space is said to be a Hilbert
space.

A.3.2 Bilinear forms and energetic spaces
The information that matters the most can be summarized in the following. We
can associate every bilinear form on a Banach space V a : V × V → R with a
unique linear operator A : V → V ′ defined by

(Au) (v) = 〈Au, v〉 = a (u, v) , ∀u, v ∈ V. (A.1)
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It can be shown that for each bilinear form a : V ×V → R there is one and only
one associated linear operator A : V → V ′. Some properties of bilinear forms
are:

Definition A.19. Let V be a Hilbert space on R, a : V × V → R a bilinear
form and A : V → V ′ a linear operator related to a (·, ·) via (A.1). We can state
the following:

1. a (·, ·) is bounded o if there exists a constant Ca > 0 such that |a (u, v)| ≤
Ca ‖u‖ ‖v‖ , ∀u, v ∈ V (continuity);

2. a (·, ·) is V-elliptic if there exists a constant C̃a > 0 such that a (v, v) ≥
C̃a ‖v‖2V , ∀v ∈ V ;

3. a (·, ·) is symmetric if a (u, v) = a (v, u) , ∀u, v ∈ V .

The bilinear form can be used to define an inner product, and therefore a
new space called Energetic space.

Definition A.20. Let V be a Hilbert space and a : V × V → R a bounded
symmetric V-elliptic bilinear form. The bilinear form defines an inner product
〈u, v〉e = a (u, v) satisfying Definition A.15 called energetic inner product. The
norm induced by the energetic inner product is

‖u‖e =
√
〈u, u〉e,

and it’s called energy norm.

Once the energetic inner product is defined, we can define the energetic
space. The reason for its name comes from physics, as in many systems the
energy can be expressed as an energetic inner product.

Definition A.21. A subspace of an Hilbert space equipped with an energetic
inner product is an energetic space.

A.3.3 Projections

Definition A.22. Let V be a linear space. An operator P : V → V is said to
be a projection if it is both linear and idempotent (P 2 = P ).

Lemma A.23. Let V be a linear space. If V is a direct sum of two subspaces
V1 and V2, V = V1⊕V2, then there exists a unique projection P so that P (V ) =
V1, (I − P ) (V ) = V2. Conversely, every projection operator P determines a
decomposition of the space V into

V = P (V )⊕ (I − P ) (V ) .

An example of projection operator is the Lagrange interpolation

Pv =

n∑
i=0

v (xi)
∏
j 6=i

x− xj
xi − xj

, ∀v ∈ V.
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Definition A.24. Let V be a Hilbert space. An operator P : V → V is said
to be an orthogonal projection if it is linear, idempotent and if

(v − Pv,w)V = 0, ∀v ∈ V,w ∈ P (V ) .

The space P (V ) is said to be the projection subspace.

Lemma A.25 reports an important fact about orthogonal projections: Pv
is the closest element to v ∈ V among all the elements in the projection space
P (V ).

Lemma A.25. Let V be a Hilbert space and W a closed subspace of V equipped
with an orthonormal basis BW = {w1, . . . , wn}. Let P be an orthogonal projec-
tion operator such that P (V ) = W . Then for any v ∈ V we have

‖v − Pv‖ = inf
w∈W

‖v − w‖ .

A.4 Sobolev spaces
Definition A.26. Let Ω ⊂ Rd be an open set, k ≥ 1 an integer number and
p ∈ [1,∞). we define

W k,p (Ω) = {f ∈ Lp (Ω) : Dα
wf esists and lies in Lp (Ω) for all multi-indices α, |α| ≤ k} .

For every 1 ≤ p <∞ the norm ‖·‖k,p is defined as

‖f‖k,p =

ˆ
Ω

∑
|α|≤k

|Dα
wf |

p
dx


1

p
=

∑
|α|≤k

‖Dα
wf‖

p
p


1

p
.

For p =∞ we define
‖f‖k,∞ = max

|α|≤k
‖Dα

wf‖∞ .

In the case p = 2 we abbreviate W k,p (Ω) = Hk (Ω).

It is important to note that:

Definition A.27. Let Ω ⊂ Rd be an open set, k ≥ 1 an integer number. The
Sobolev space W k,2 = Hk, endowed with the inner product

〈f, g〉k,2 =

ˆ
Ω

∑
|α|≤k

DαfDαgdx =
∑
|α|≤k

〈Dαd,Dαg〉L2(Ω)

is a Hilbert space.

Switch definition.

Definition A.28. Let Ω ⊂ Rd be an open set, k > 1 an integer number. The
space Hk

0 (Ω) is a subspace of the Hilbert space Hk and its definition is

Hk
0 (Ω) =

{
v ∈ Hk (Ω) : Dαv = 0 on ∂Ω ∀ |α| < k

}
.
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A.4.1 Distributions

Definition A.29. Let Ω ⊂ Rd be an open set. The space of distributions is the
space containing all the infinitely smooth functions with compact support, and
can be defined by the writing

C∞0 (Ω) = {ϕ ∈ C∞ (Ω) : supp (ϕ) ⊂ Ω, supp (ϕ) is compact} ,

where the support of the function ϕ is defined as

supp (ϕ) = {x ∈ Ω : ϕ (x) 6= 0}

and it is always closed and bounded.

Example A.30. Consider a bounded domain Ω = (−1, 1) ⊂ R and consider
the functions

ϕ (x) = cos (πx) + 1, χ (x) = e
− 1

1− x2 .

These functions are not distributions in Ω as

supp (ϕ) = supp (χ) = [−1, 1] * Ω.

However, the function χ can be extended by zero to be a distribution in the
interval (−1− ε, 1 + ε), where ε > 0. The same cannot be done for ϕ as it
wouldn’t be C∞ anymore, and this is a requirement for being a distribution.

Remark A.31. As stated in Definition A.29, the support of a function ϕ ∈
C∞0 (Ω) is surely a closed set (as it is the closure of a set). This means any
support can never touch the boundary of an open set Ω (like it was in Example
A.30). This means for every ϕ ∈ C∞0 (Ω) there is a thin interval along the
boundary ∂Ω where ϕ vanishes, as done in Example A.30.

A.4.2 Generalized integration by parts

Remark A.32. The formula of generalized integration by parts is often used
when working with partial differential equations and in the weak formulation.
Assume a bounded domain Ω ⊂ Rd with Lipschitz-continuous boundary and
assume

ν (x) = (ν1, ν2, . . . , νd)
T

(x)

is the outer normal to ∂Ω. The Green’s theorem for H1 (Ω)-functions states:

Theorem A.33. For every u, v ∈ H1 (Ω) it holds
ˆ

Ω

∂u

∂xi
vdx = −

ˆ
Ω

u
∂v

∂xi
dx+

ˆ
∂Ω

uvνidS.

Using Theorem A.33 it is possible to write, furthermore, the following lemma:

Lemma A.34. For all u ∈ H1 (Ω) and v ∈ H2 (Ω) it is
ˆ

Ω

u∆vdx = −
ˆ

Ω

∇u∇vdx+

ˆ
∂Ω

u
∂v

∂ν
dS,
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where
∂v

∂ν
= ∇v (x) · ν (x) , x ∈ ∂Ω.

For all u ∈
[
H1 (Ω)

]d and v ∈ H1 (Ω) it holds
ˆ

Ω

(divu) vdx = −
ˆ

Ω

u · ∇vdx+

ˆ
∂Ω

(u · ν) vdS.
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Appendix B

Notes of calculus

B.1 Continuity

In mathematics, a continuous function is a function for which, intuitively, small
changes in the input result in small changes in the output. Otherwise, a function
is said to be discontinuous. A continuous function with a continuous inverse
function is called bicontinuous. An intuitive though imprecise (and inexact)
idea of continuity is given by the common statement that a continuous function
is a function whose graph can be drawn without lifting the chalk from the
blackboard.

Definition B.1. A function f of variable x is continuous in x0 if

1. f (x0) exists;

2. lim
x→x0

f (x) exists;

3. lim
x→x0

f (x) = f (x0).

Definition B.2. A function f : I → R of variable x is said to be k times
continuously differentiable in the interval I, or of class Ck (I), if its derivatives
of order j, where 0 ≤ j ≤ k, exists and are continuous functions for all x ∈ I. A
C∞ (I) function is a function that possesses continuous derivatives of any order.

B.2 Chain rule

The chain rule is the rule for the differentiation of the composite of two functions.

Definition B.3. Suppose f : x ∈ Rn → Rm is a function from the Euclidean
n-space to the Euclidean m-space. Such a function is given by m real-valued
component functions

f1 (x1, x2, . . . , xn) , f2 (x1, x2, . . . , xn) , . . . , fm (x1, x2, . . . , xn) .
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The partial derivatives of all these functions (if they exist) can be organized in
an m× n matrix, the Jacobian matrix Jf as follows:

Jf =


∂f1

∂x1
· · · ∂f1

∂xn
...

. . .
...

∂fm
∂x1

· · · ∂fm
∂xn

 .

Possible notations are Jf (x1, x2, . . . , xn),
∂ (y1, y2, . . . , ym)

∂ (x1, x2, . . . , xn)
and Df

Dx .

Theorem B.4. Let ψ be a real-value function on (a, b) which is differentiable at
c ∈ (a, b), and let ϑ be a real-valued function defined on an interval l containing
the range of ψ and ψ (c) as an interior point. If ϑ is differentiable at ψ (c), then

(ϑ ◦ ψ) (x)

is differentiable at x = c, and

(ϑ ◦ ψ)
′
(c) = ϑ′ (ψ (c))ψ′ (c) .

It is possible to generalize this theorem to more variables and to partial
derivatives using the definition of Jacobian matrix.

Theorem B.5. Let U ⊂ Rm and V ⊂ Rn be open domains and let

ψ : V → Rl, ϑ : U → V.

The chain rule takes the form

Jψ◦ϑ (x) = (Jψ ◦ ϑ) Jϑ.

B.3 Integration by substitution
Theorem B.6. Let U, V be open sets in Rn and ϕ : U → V an injective
differentiable function with continuous partial derivatives, the Jacobian of which
is nonzero for every x ∈ U . Then, for any real-valued, compactly supported,
continuous function f , with support connected in ϕ (U),

ˆ
ϕ(U)

f (v) dv =

ˆ
U

f (ϕ (u)) |Jϕ (u)| du.

B.4 Taylor expansion
The Taylor expansion is useful when facing the problem of approximating a
function with polynomials in a point inside the domain. Let f : (a, b)→ R and
x0 ∈ (a, b). If f is continuous in x0 we can write (see Definition B.1 and using
the definition of limit)

lim
x→x0

f (x) = f (x0)⇔ lim
x→x0

f (x)− f (x0) = 0.
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Using the Landau notation o (·) we can rewrite f (x) as

f (x) = f (x0) + o (1) , x→ x0

and, if f is differentiable in x0 (by definition of differentiability)

f (x)− f (x0)

x− x0
= f ′ (x) , x→ x0,

which can be rewritten again using the Landau notation

f (x) = f (x0) + f ′ (x0) (x− x0) + o (x− x0) , x→ x0.

This way we were able to write f (x) using a polynomial of degree 0 and a
polynomial of degree 1, which can be thought of as approximations of f (x).
The same process can be continued again using polynomials of higher order.
All of this can be summarized with the Taylor’s theorem.

Theorem B.7. If n ≥ 0 is an integer and f is a function which is n times con-
tinuously differentiable on the closed interval [a, x] and n+1 times differentiable
on the open interval (a, x), then

f (x) = f (a)+
f ′ (a)

1!
(x− a)+

f ′′ (a)

2!
(x− a)

2
+ ...+

f (n) (a)

n!
(x− a)

n
+Rn (x) .

Rn (x) is the remainder term, and several expressions are available to express
it. The Taylor’s theorem can be generalized to several variables as follows.

Theorem B.8. Let B be a ball in Rn centered at a point a, and f be a real-valued
function defined on the closure B having n+ 1 continuous partial derivatives at
every point. Taylor’s theorem asserts that for any x ∈ B

f (x) =

n∑
|α|=0

1

α!

∂αf (a)

∂xα
(x− a)

α
+

∑
|α|=n+1

Rα (x) (x− a)
α

where the summation extends over the multi-indices α.
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Control point, 74, 101
Control polygon, 101

Convergence, 29, 31, 32

D
Degeneration, 32
Degree elevation, 119, 136
Degrees of freedom, 17
Delta property, 53
Differential equation, 15
Dirichlet lift, 21
Discrete problem, 28

E
Edge basis function, 55
Edge function, 53
Edge nodes, 52
Element subdivision, 67
Elliptic operator, 19
Elliptic PDE, 18, 19
Enrichment, 67
Explicit equation, 71

F
Fekete points, 53
Finite element, 15, 34
Finite Element Method (FEM), 15, 27
Force vector, 28

G
Galerkin method, 27, 49, 64
Gauss-Lobatto nodal point, 42
Gauss-Lobatto points, 52
grid generator, 16
Grid vertex, 34

H
Hat functions, 34
HERMES project, 69
Homogeneous Dirichlet boundary con-

dition, 19
hp-refinement, 68, 69, 119, 141
h-refinement, 67
Hyperbolic PDE, 18, 24
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I
Implicit equation, 71
Index space, 97
Interpolation, 17
Isogeometric Analysis, 15
Isogeometric analysis, 115
Isoparametric concept, 30, 31, 45
Isoparametric element, 31

K
Knot, 79
Knot insertion, 119, 135
Knot vector, 79

L
Lagrange interpolation, 40
Lagrange interpolation condition, 40
Lagrange shape function, 52
Legendre differential equation, 43
Legendre polynomial, 43
Linear system, 128
Lipschitz-continuity, 19
Local nodal interpolant, 30
Local refinement, 136
Lowest-order element, 48
Lowest-order elements, 33

M
Mapping, 32
Mathematical model, 15
Mesh, 34, 48, 127
Mesh diameter, 34
Mesh regeneration, 67

N
Neumann boundary conditions, 21
Nodal element, 29
Nodal point, 40
Nodal shape function, 30
Nonhomogeneous Dirichlet boundary con-

ditions, 20
Nonuniform p-refinement, 69
NURBS, 97

NURBS curve, 101
NURBS surface, 103

O
One-to-one mapping, 32
Onto, 32
optimization loop, 16

Ordinary Differential Equation (ODE),
15

Orthogonal projection, 65

P
Parabolic PDE, 18, 23
Parametric equation, 71
Parametric space, 97, 117
Partial Differential Equation (PDE), 15
Partition of unity, 111
Patch, 127
PDE, 18
ph-refinement, 119, 141
Physical space, 97
Point collocation, 64
Power basis representation, 73

Power basis curve, 73
Power basis surface, 74

p-refinement, 67

R
Rational basis function, 77, 105
Reference domain, 30
Reference map, 30, 45
Refinement, 66

h-refinement, 67
p-refinement, 67

Refinements, 135
h-refinement, 135
p-refinement, 136

Remeshing, 67
Rodrigues’ formula, 43
Roof functions, 34
r-refinement, 68
Runge’s phenomenon, 42

S
Second-order PDE, 18
Shape function, 15
Shape functions, 40
Smooth, 32
Space of the B-splines, 88
Space-time cylinder, 19
Star point, 112
Stiffness matrix, 28
Strong solution, 19
Subdomain collocation, 64
Surface, 71

T
Tensor product, 72
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Test function, 20
Time-dependant PDE, 19
Time-in dependant PDE, 19
T-junctions, 111
T-mesh, 111

U
Unconstrained grid vertex, 50
Unisolvency, 29
Unknown vector, 28

V
Variation, 20
Variational crime, 127
Variational crimes, 48
Vertex basis function, 55
Vertex function, 43–45, 53
Vertex nodes, 52
Vertex patch, 50, 55
Volumetric modeler, 16

W
Weak formulation, 19
Weierstrass approximation theorem, 42
Weight, 77, 105, 109
Weight function, 20
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