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Abstract The thesis begins with a short introduction to elliptic, parabolic
and hyperbolic Partial Differential Equations and proceedes with a presentation
of the Finite Element Method. Some important models for the representation
of curves, surfaces and solids are explored before introducing a generalization
of the Finite Element Method, namely Isogeometric Analysis. Algorithms for
computation and numerical examples are presented.
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Chapter 1

Introduction

An efficient way of describing the behaviour of a system (e.g. natural systems)
is to use a mathematical model. Among the mathematical models, differential
equations (briefly described in Section 1.3) are commonly used when trying to
relate functions to their rates of change. Examples of processes described by dif-
ferential equations are constructions, weather, flow of liquids (e.g. flow of blood
in human veins), deformation of solid bodies, heat transfer, chemical reactions,
electromagnetism etc... Differential equations can be grouped in Ordinary Dif-
ferential Equations (ODEs) and Partial Differential Equations (PDEs). ODEs
are equations in which the unknown function is a function of a single variable;
vice versa in PDEs the unknown function is a function of multiple variables.
The manipulation of models is an important task for people to control, predict
and understand the processes they describe.

Unfortunately, we are not able to find exact solutions for many of these types
of equations, and sometimes we don’t even know whether the solution exists or
not or whether it is unique or not. However, approximation methods exist, and
one of these is the Finite Element Method (FEM). FEM is currently one of the
most efficient way of finding approximations for PDEs for which we’re not able to
find an exact solution. The idea of FEM is to divide the domain of the problem
in finite elements where a finite set of polynomial basis functions is defined, and
which create the basis for the space where the approximated solution is searched.
This way, the problem is transformed into a discrete problem, as the solution is
expressed through a finite number of unknown parameters. A key concept in this
process is the choice of the finite set of polynomials used in the approximation:
until recent times, mostly simple shape functions were used, so as to simplify
implementation and usage. During the last years, the usage of higher-order
shape functions has been reconsidered, due to their superior approximation
capabilities. However, employing such more complex shape functions requires a
better understanding of the underlying mathematics. Chapter 2 reports a brief
discussion of finite elements and of the main concepts of FEM.

A new development of FEM has been recently proposed in [3, 18] (but already
proposed before in [15]) and named Isogeometric Analysis (IGA). This can be
considered an improvement which generalizes the concepts of FEM through
a different definition of the basis functions using CAD basis functions, whose
description is reported in Chapter 3.

This new idea is described in Chapter 4. Examples of usage of IGA are given

15
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Figure 1.1: Current automated design loop.
in Chapter 5.

1.1 Automated Design Loop

Automated design loops are now used in industrial environments to create and
optimize models. These loops are made up of many phases, each employing
different input/output technologies and each belonging to different scientific
fields. It is difficult, therefore, to let data be processed by all these phases: this
results in a considerable overhead due to frequent translations and adaptations
of the same model. A representation of the loop can be seen in Figure 1.1.

A CAD modeler is first used in order to design a first draft of the sys-
tem under construction. This model can be described using any kind of CAD
functions, such as B-splines, NURBS’s or T-splines (see 3), for instance. This
model is then the input of the grid generator, which creates a grid on the CAD
model. This causes a deep modification of the geometry (see Figures 2.4, 2.3
and 5.9). Typically, in fact, piecewise-linear functions are used to approximate
the boundaries, for example using a triangulation technique. The grid generated
is then passed to the optimization loop, which simulates some kind of situation,
and, according to the results, deforms the grid so as to maximize an objective
function. The deformed grid is then passed back to the CAD modeler for the
manufacturing process. This loop has several drawbacks:

e it spans many different technological fields, causing integration issues;

e it includes many different representations of similar concepts, requiring
translations and conversions;

e it needs several different software with several different input/output for-
mats.

The loop just presented is the loop resulting when FEM-based solvers are used.

A completely different approach is that of IGA (see Figure 1.2). The concept
is to perform computations on parametric curves, surfaces and volumes instead
of grids: thus, the grid generator is replaced by the volumetric modeler, which
builds a CAD domain needed by the optimization loop. Simulations are, in the
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Figure 1.2: Isogeometric automated design loop.

loop, carried out performing integrations on the CAD basis functions. Far less
overhead should be introduced in this approach, which can now be merged in

one single process. This approach is a step towards integration of CAD and
FEM.

1.2 Approximation

As already remarked, the problem of finding a function satisfying a PDE or a
system of PDE and some additional constrains, is not exactly solvable in general.
It is therefore necessary to approximate the resulting function starting from a
certain number of known values, the degrees of freedom (DOFs). FEM and IGA
are responsible of finding these values.

Assume C'is a set of functions where C' C V and V is a linear space. If g € V,
an approximation problem consists in finding a function go € C' which is close
to g, where the term close is to be defined some way. The measure of the quality
of the approximation can be defined, for instance, as the norm ||g — gc||,, if the
linear space V' is a normed space. In this case, the best approximation is that
function go which minimizes the distance between go and g. The approximation
problem becomes an interpolation when gc has to satisfy some constraints,
generally defined by

Ll(gc):b“ izl,...,NC,

with L; : V — R independent linear forms in V' and b; given constraints. This
is the case for the Lagrange interpolation in 2.3.4.1, for instance.

It is clear that the choice of the space C' is critical to get an approximation
close to the exact solution. The features of the approximation using one of the
sets or the other will be explored in detail in 2.2 and in 4.4.

1.2.1 Best interpolant

Assume V' is a finite-dimensional subset of the Hilbert space V. According
to Lemma A.25, the closest element to g € V is the orthogonal projection
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¢’ = Pg € V' in the norm |-, . The orthogonal projection is defined as
(g—g',v'), =0, VW eV,
or, assuming {v},..., vy} C V' is a basis of V’
(g—g,vi)y =0, Vl,i=1,...,N. (1.1)

Being V' a linear space and as g’ € V'’ we can write it as the linear combination
N
g =29
j=1
which can be substituted in (1.1), yielding

vhol) = (g, v))y, Yi=1,...,N.

H'MZ

This is a linear system in the unknowns gj,. .., §-

1.3 Partial Differential Equations (PDEs)

PDEs encountered in physics and engineering are mostly second-order PDEs
which are usually either elliptic, parabolic or hyperbolic. Elliptic equations de-
scribe the particular state of a system characterized by the minimum of a spe-
cific quantity (usually energy), parabolic problems mostly describe its evolution
whereas hyperbolic equations model the transport of some physical quantity or
information. Any other kind of second-order PDE is said to be undetermined.

The general form of a second-order PDE defined on an open connected! set
(see Sub-subsection A.2.1) Z C R™ in n independent variables z = (21, ..., 2,)"
can be expressed as

ou
_ZaZl(”a )+Z( bu +Czaz

i,5=1

) fau=f (12

(2

where a5, b;, ¢;, ap and f are all functions of the variable z. For all derivatives to
exist it is necessary to be: u € C?(2), a;; € C'(Z), b; € C'(Z), ¢; € C* (2),
ag € C(Z) and f € C(Z) (for the definition of continuity see Section B.1).
According to this way of expressing a PDE, it is possible to define the terms
elliptic, parabolic and hyperbolic used above.

Definition 1.1. According to the equation (1.2) and to the matrix A(z) =
{aij}zjzl, the equation is said to be elliptic at z € Z if A (z) is positive definite,
parabolic if both at z € Z A (z) is positive semidefinite (and not definite) and
the rank of (A(2),b(2),c(z)) is n and hyperbolic when at z € Z A(z) has
one negative and n — 1 positive eigenvalues. An equation is elliptic, parabolic
or hyperbolic when it is elliptic, parabolic or hyperbolic for all z € Z.

LA connected space is a topological space which cannot be represented as the union of two
or more disjoint nonempty open subsets. A subset of a topological space X is a connected set
if it is a connected space when viewed as a subspace of X.
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Remark 1.2. In practice we distinguish between time-independent PDEs (like
elliptic PDEs) and time-dependent PDEs. For a time-independent equation, we
define n = d (d is the spatial dimension) and z = x (x is the spatial variable).
In case the equation is time-dependant, it is useful to define n = d+1 (d spatial
dimensions plus time) and z = (x,t), where ¢ represents the time. The same
way, we define Z to be a domain which comprise both space and time, and we
use {2 when the domain is time-independent. When there is the special case in
which the equation is time-dependant but the spatial domain is not, we use the
expression space-time cylinder, and we denote it with Z = Q x (0,T) (€ is the
spatial portion of the domain, (0,7 is the time interval).

Definition 1.3. It is useful to define the elliptic operator L which allows the
writing of PDEs in a compact form (elliptic equations are time-independent so
n=dand u=u(x)=u(z)):

"9 0
Lu:—lz pr (a”a )+Z( (biu) +cla;t)+aou (1.3)

i,5=1

1.4 Second-order elliptic equations

Second-order elliptic equations are briefly presented: weak formulation is de-
rived, nonhomogeneous Dirichlet boundary conditions and Neumann boundary
conditions are introduced.

1.4.1 Weak formulation

Assuming an elliptic equation in the form of the equation (1.2), it is possible to
consider the alternate model equation

-V (a1Vu) +apu=f (1.4)

where a;; (z) = a1 (x)6;; and b(z) = ¢(x) = 0 in Q, and Q is Q@ C R? with
Lipschitz-continuous? boundary.

The simplest case is obtained imposing the homogeneous Dirichlet boundary
conditions

u(z) =0, Yz € 0Q (1.5)

which assure the solution function will vanish on the boundary of the domain.

In these conditions, the strong or classical solution to the problem consisting
of the equations (1.4) and (1.5) is a function u € C? () N C (Q) for which (1.4)
is true for all € Q and (1.5) is true for all € 9Q. Unfortunately, it is not
possible to guarantee the solvability of the problem in any way.

Nevertheless, it is possible to introduce an alternative model of the problem
(1.4), (1.5). This model, named weak formulation, can be derived following four
steps which begin with the use of (1.4).

2Given two metric spaces (X,dx) and (Y, dy), where dx denotes the metric on the set X
and dy denoted the metric on the set Y, a function f : X — Y is called Lipschitz-continuous
if there exists a real constant K > 0 such that, for all 1 and z2 in X

y (f (z1), f (z2)) < Kdx (z1,22).
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1. Multiply with a test function (also named weight function of variation)
w € C§° () (for a definition of CF° (2) see Sub-subsection A.4.1):

=V - (@a1Vu) p + agup = fop.

2. Integrate over the domain $2:

_//S)V~(a1Vu)cpdm+//anuﬁpl‘://Qf@w-

3. Using the Green’s theorem (see Subsection A.4.2) it is possible to reduce
the maximum order of the derivatives:

// a1Vu.Vgod:c+// agupdr = // fgad:n—i—% goal@ds.
Q Q Q a0 on

Furthermore, it is to consider that ¢ is a distribution and, for what is
explained in Sub-subsection A.4.1, is null on the boundary of the domain

Q, leading to
// a1Vu - Vdz + // apupdr = // fedx. (1.6)
Q Q Q

4. Tt is possible to change the spaces assumed above, relaxing the restrictions.
It was necessary to assume u € C?(Q) N C (Q) and ¢ € C5° () but,
considering the equation (1.6) it is sufficient to assume v € U and ¢ € V
with U =V = H} (Q), f € L?(Q) and ay,a9 € L>™ ().

It is therefore possible now to formulate the problem in a different way: given
fe€L?(Q),findawueU so that

// (a1Vu - Vo + agup) de = // fpdx, Yo € V.
Q Q

The writing of the formulae above can be simplified employing the bilinear form
a(--):UxV — R and a linear form [ (-) : V. — R defined respectively:

a(u, @) = //Q (a1 Vu - Vo + apup) de

and

I(g) = / [ roda.

(1.6) can then be rewritten in the simpler way
a(u,) =1(p).

1.4.2 Nonhomogeneous Dirichlet boundary conditions

The model reported so far assumes the homogeneous Dirichlet boundary con-
ditions of the equation (1.5). It is necessary to extend the model in order to
accommodate for the presence of the nonhomogeneous Dirichlet boundary con-
ditions

u(zx) =g (x), Ve € 0Q. (1.7)
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where g € C (092). This requires to redefine the set of trial solutions U with
U={ulue H (Q),u(z) = g(z)Vz € 092} .

For reasons that will be explained afterwards, a new function y € C? (Q)NC ()
(called Dirichlet lift) for which v = g on the boundary of 2 so that

u=7vy+wv, (1.8)
is defined, with v € V. By substitution, the problem (1.4), (1.7) yields:

=V (a1Vv)+apw=f+ V- (a1VYy) —agy, Yee
v =0, YV € 02

Following the four steps of the sub-subsection 1.4.1, the weak formulation reads:
given f € L?(Q), find v € V for which

// (a1Vu - Vo + agup) de = // (fo—a1Vvy Vo —agyp)de, Vo eV
Q Q
or in the language of the linear forms

a(v,0) =1(p), Vo €V,
with
a(v,p) = // (a1Vu - Vo + agup)de, p €V
Q

l(‘P)://Q(fSD*alva'VCP*QO’Y‘P)dma peV

given (1.7) and (1.8).
It is possible to prove that the solution is independent on the Dirichlet lift
5.

1.4.3 Neumann boundary conditions

There are different kinds of boundary conditions which can be imposed to the
problem of the equation (1.4). Neumann boundary conditions can be expressed
with
ou (x)
ov

—g(x), Yz € 00 (1.9)

with g € C'(09).

Following the usual four steps for the formulation of the weak form of the
problem, it can be seen that the function ¢ does not vanish anymore on the
boundary. This is because we now have to require both u and v to be C*° ()N
C! (Q), as they have to be differentiable on the boundary of €2, so that v doesn’t
vanish anymore and a new integral appears in the final formulation, which
becomes: given f € L2 (Q) and g € L? (09), find u € U = H! (Q) (solutions are
not required to vanish on the boundary anymore, so the trial solutions space is
no more Hy but only H') such that

//(a1Vu-ch+a0u<p)dw://fcpdw+y§ a19pdS, Yo € V = H' (Q)
Q Q a0
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or in the language of the linear forms

a(u,9)=1(p), Vo € H (Q)
where
a(u,p) = // (a1Vu - Vi + aguep) dz, Vo,u € H' ()
Q

L(g) = //Q fodz + ygﬂ a1gdS, Vi € H' (9),

given (1.9).

1.4.4 Combination of boundary conditions

A formulation for a problem which is characterized by both Dirichlet and Neu-
mann boundary conditions can be derived from the above discussion. The
boundary 91 is divided in two parts such that 02 = I'y UT'p, where I'y
is the part of the boundary on which Neumann boundary conditions are im-
posed and where I'p is the part on which Dirichlet conditions are defined. The
original form of the problem is then:

=V - (a1Vu) +apu=f, Ve
U= gp, Ve el'p . (1.10)
U= gn, Ve e I'y

Before beginning with the first step of the process of derivation of the weak
formulation, it is necessary to extend the function gp which needs to be C' (I'p)
with a function gp € C (99Q) such that it is gp = gp on I'p. Next, as stated
above, it is necessary to define a Dirichlet lift v so that it is possible to express
the solution v with the sum v + v with v = gp. By substitution we get

V- (@1V(y+v)+ta(y+v)=f, VxeQ

A/+U:gDv V.’.CGFD )
0
(7+U):gN7 vaFN
v

which can be further modified to get

V- (a1Vv)+apw=f+V-(a1Vy) —agy, Yz €

v =0, Vzelp . (1.11)
0
olbv+y) _ o Ve €Ty

ov

The four steps for the derivation of the weak formulation yield to the prob-
lem: find a function v € H! () such that

// (a1Vv - Vo + apvp) de =
Q

//Q(fcp—va-Vgo—ango)dw—i—/r (argn@)dS, Yo € H (). (1.12)

University of Padua Faculty of Engineering




CHAPTER 1. INTRODUCTION 23

The result can now be rewritten in the language of the linear forms:
a(v,p) =1(p), Yo € H' (Q) (1.13)

where
a(v,p) = // (a1 Vv - Vi + aguyp) dx, v, € H* ()
Q

L(p) = // (fo — a1Vy - Vo — aoyp) d + / (argnp) S, Vg € H' Q).

N

1.5 Second-order parabolic equations

Another important class of PDEs is the class of second-order parabolic equa-
tions, which is a generalization of an important particular case: the heat equa-
tion. Let Q C R? be an open set with Lipschitz-continuous boundary. We will
refer to the equation in the form

Ou (z,t)

ot
where t is the temporal variable, n = d+1 and L is an elliptic operator with time-
independent coefficients only of the form of Equation (1.3). Equation (1.14) is

considered in the time cylinder introduced in Remark 1.2 Zr = Q x (0,7T), with
T>0.

+ L (u(x,t))=f(x,t), in Q, (1.14)

1.5.1 Weak formulation

The simplest case is that of homogeneous Dirichlet boundary condition, which
yields a problem of the form

9
a—’Z+Lu=f, in Zp

u =0, on 002 x (0,7
u=g, on Q x {t =0}

It is necessary to assume a;j,b;,¢; € L (Zr), f € L*(Zr) and g € L? (Zr).
The process of derivation of the weak formulation is similar to that used in the

elliptic case, except for the presence of the time-dependant part of the equation.
For this we need to define some spaces.

Definition 1.4. By L4 (O, T, Wk» (Q)) we denote the space
T
{u (0, T) — W*P(Q), u is measurable and / [l (t)||z7p’Q dt < oo} ,
0

endowed with the norm

r q
ull Lo o,0wrr () = (/0 [u (D% .0 dt) .

The symbol u (¢) indicates a function of @ such that u (t) : @ — u (x,t).
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Definition 1.5. We define the space
C (0, T]; L7 () = {u  0,7] = L7 () : [|u (£)]], o is continuous in [o,T]}.

Analogously we define the space

C([0,7]; Wk (Q)) = {u:[0,T] - WF? (Q):

|u ()]l . is continuous in [O,T]} .

With these definitions it is possible to derive a weak formulation for ho-
mogeneous Dirichlet boundary conditions. The problems with the assumptions
above and v € Hg (Q) is to find uw € L (0,75 V) N C ([0, T]; L? (2)) for which

&) v +a(ut),0) = (7 (1) 0)a, VeV, £ (0.7)

and
u (0) = ug.

The definition of the bilinear form a (-, -) is

d d
ou Ov ov ou
— E Lgu v E 20 LY (11
a(u,v) /Q ij:la” Ox; Ox; P (bluﬁxi C’Uaxi) aouv | dz. (1.15)

The nonhomogeneous Dirichlet boundary conditions are treated the same way
they were treated in the elliptic case, using the Dirichlet lift; the same holds for
the Neumann boundary conditions.

1.6 Second-order hyperbolic equations
The form of an hyperbolic equation can be expressed with the equation

0%u
o TLu=1,

where L is en elliptic operator of the form
d
0 0
L= — |a;=— ).
G
i,j=1

As in the case of parabolic equations we are interested in solving the equation
in the time cylinder Zy = Q x (0,T), with Q C R? an open bounded set with
Lipschitz-continuous boundary.

1.6.1 Weak formulation

Given the definition of the problem and the definitions of Sub-subsection 1.5.1
we can formulate the problem: given f € L? (Z7) and the initial conditions ug €
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H} (Q) and uy € L?(Q), find a function u € C ([0, T]; H} (2))NC* ([0,T7]; L* (Q))
such that

% (w(t),v)2+a(ut),v)={(f(t),v)., Yo H;(Q), t€(0,T)

Z(O) = ug

5 0O =u

where the definition of a (-, -) is that given in Equation (1.15).
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Chapter 2

Finite Element Method

A very efficient and widely used method for approximating solutions of PDEs
is the Finite Element Method. In this chapter the fundamental elements are
presented. In Section 2.1 we describe the idea of the Galerkin method, which is
necessary to obtain a discrete problem, so that a solution u € V', where V is a
space of infinite dimension, is approximated with a function u,, € V,, with V,, of
finite dimension. When the space V,, comprise piecewise-polynomial functions
only, the Galerkin method is called Finite Element Method. FEM divides the
domain of the problem in finite elements, and defines the functions belonging
to V,, on them. In Section 2.2, the finite elements are formally defined. In 2.3
one-dimensional problems are examined, and the order of the polynomials is
discussed. Two-dimensional and three-dimensional problems are reported in 2.4
and 2.5. In 2.6 the description of the geometry is taken into account, and in 2.7
integration over this geometry is analyzed. Some discussions on performance
and efficiency are then proposed.

2.1 Galerkin method

The Galerkin method faces the problem of finding a function v belonging to a
Hilbert space V' such that

a(u,0)=1(p), VeV (2.1)

with a(,-) : VxV = Rand I(-) : V — R. The problem expressed by the
equation (2.1) is formulated in a space V of infinite dimensions. It is not possible
therefore to find a solution as a function of an infinite number of unknown
parameters. Hence, the idea of the method is to reduce the dimension of the
space V', defining a sequence of subspaces such that

Vo C Va1 C...CV. (2.2)

In each subspace it is possible to find an approximate solution of the problem
of the equation (2.1). If we consider the sequence of solutions w, € V,, n =

1,...,400 it can be seen that they converge to the exact solution u € V
lim |lu, — ul|| = 0.
n—-+oo
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The problem of finding a solution w,, € V,, satisfying

a (una 50) = l(@) , Vo eV (23)

is called discrete problem.

The solution to the problem (2.3) can be found considering that w, is a
function belonging to a space of finite dimension which is also a linear space
dim (V,,) = N,,, and so it can be expressed as a linear combination of the basis

functions:
N, -1
Up = Z U;iv;
=0
where {vi}ﬁvz’l'o_l is a basis for the space V,,. By substitution in (2.3) we get

N, —1
a < > Uivi7<P> =1(p), Vo € Vp.
1=0

Considering the linearity of the a (-,-) operator it is possible to move the coef-
ficients of the linear combination outside of the operator:

N,—1

Z ;a (vi, ) =1(p), Vo € V.
i=0

The equation needs to be an identity for all the functions ¢ € V,, and so even
for the basis functions {v; };.V;lo_l. We obtain:

N,—1

> wa(viv) =1(v;), j=0,...,N, — L. (2.4)
=0

It is possible to write equation (2.4) using matrices:
Sy - l_]n =F,,

where
is the stiffness matriz,

is the unknown vector and

Fp= [l

is the force vector.

Remark 2.1. In this presentation the subscript n has been used to distinguish
between Galerkin subspaces. However, the subscript h is often used, and it
indicates the size of the elements of the mesh!, as we will see afterwards in
Subsection 2.3.1. Nothing changes in what has been said, as h can be seen as a
function h (n) so that in the Galerkin procedure

li n= i n)-
n—lgloou h(fggo Yh(n)

1The mesh is a subdivision of the domain. It will be explained in more details afterwards.
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2.1.1 Convergence

Theorem 2.2. Let V' be an Hilbert space and Vi C Vo C ... CV a sequence of
its finite dimensional subspaces such that

+oo
Uv=v
n=1

Leta(-,-): VXV — R be a bounded bilinear V-elliptic form and 1 € V'. Then

lim |lu—wuy|, =0. (2.5)

n—4oo

Remark 2.3. By saying that (2.5) we say that the Galerkin method converges
to the exact solution when approximating with spaces nearer and nearer to the
original space V.

2.2 Nodal elements and unisolvency

A fundamental concept in finite element analysis is that of the nodal element.
A possible formal definition can be given:

Definition 2.4. The nodal finite element is a triple (K, P, £) where
e K C R%is a bounded domain with Lipschitz-continuous boundary;
e P is a space of polynomials defined on the domain K with dim (P) = Np;

o L={Lo,L1,...,Ln,_1}is aset of linear forms (called degrees of freedom
(DOF)) whose definition is

Li:geP —g(xj)eR
where the x;’s are the nodal points.

Given the definition of nodal finite element, it is important to define the
concept of unisolvency: this is a property a nodal finite element is required to
have so that it is guaranteed that the vector

2 -1
u,=8," -F,
identifies a unique polynomial
n—1
Uy = g U; V4
i=0
where u,, is a solution of the discrete problem and vg,vq,...,v,_1 is a basis of

the space where to find the solution.

Definition 2.5. A nodal finite element (K, P, L) is said to be unisolvent if for
every g € P

Lo(9)=Li(9)=...=Lnp-1(9) =0=9=0.
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Lemma 2.6. Assuming (K, P, L) is a unisolvent nodal finite element, given
any set of numbers {go, g1, ..., gnp_1} € RN?  with dim (P) = Np, there exists
a unique polynomial g € P so that

Lo(9) = g0, L1(9) =91, -, Lnp—-1(9) = gnp—1-

Definition 2.7. Assuming (K, P, £) is a nodal finite element where dim (P) =
Np, a set of functions P = {vg, v1,...,0np—1} IS a nodal basis of P if it is true
that

Li (vj):5ij, VOSZ,jngf]. (26)

In this case the functions v; are called nodal shape functions.
Given these definitions it is possible to enunciate the theorem on unisolvency.

Theorem 2.8. Consider a nodal finite element (K, P, L) with dim(P) = Np.
The finite element is unisolvent if and only if there exists a unique nodal basis
P = {Uo,vl,...,UNP_l} Cc P.

Theorem 2.8 allows the definition of a procedure for checking the unisolvency
of a defined nodal finite element.

1. Define the arbitrary basis {vg,v1,...,np—1}

2. Build the Vandermonde matrix L = [L; (vj)}fvfz_ol.
3. If L is invertible the element is unisolvent, otherwise it’s not. If L™ exists,
then it has the coefficients a;x, j =0,1,...,Np — 1 in its k*!' column.

Another important definition is that of the local nodal interpolant. The in-
terpolation on finite elements is a procedure that takes a function g € V (€,)
and produces a suitable piecewise-polynomial representant in the finite element
space gnp € Vip (), where €y, is an approximation of the domain 2, which
can even be exact, and V}, ;, is the space of piecewise-polynomials which will be
defined more precisely in Section 2.4.

Definition 2.9. Let {vg,...,vn,—1} be the unique nodal basis for the unisol-
vent finite element (K, P, L). Let g € V, where P C V, be a function for which
the values Lo (g),...,Ln,—1(g) are defined. Then the local nodal interpolant

is defined as
Np—1

Ik (9) = Y Lilg)v:

=0

Interpolation on the finite elements will be even clearer when Theorem 2.24
will be enunciated.

2.2.1 Reference maps and isoparametric concept

An important concept in FEM is that of the affine reference map and of the
reference domain, as it makes the formulation and the implementation of FEM
systems more simple and efficient. The idea is to work on a reference domain
using a suitable set of nodal shape functions defined on it, reducing every other
nodal finite element to the reference by way of an affine reference map. More
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precisely, we can define a reference domain K, a set of nodal shape functions on
K where N, is the number of nodes of the element and a reference map

TK,, :[~(—>Km

so that it is possible to map the nodal shape functions from the reference domain
to the domain K,, without the need to define nodal shape functions on every
domain of the mesh.

A reference map makes us able to map generally arbitrarily curved elements
of the mesh to reference elements. If the edges or the faces of the elements
are parametrized by non-polynomial functions, then the reference map is non-
polynomial. For an extensive study on the construction of non-polynomial ref-
erence maps see [31].

In order to make the implementation more efficient and simple, it is possible
to consider an approximation of reference maps called isoparametric. Isopara-
metric reference maps are easier to store and to handle, partial and inverse
derivatives can be calculated more efficiently. Reference maps are, so, approx-
imated by polynomial functions that, for each element K € My, ;,, are defined
as a linear combination of the shape functions of the reference domain with
vector-valued coefficients. The isoparametric concept is commonly attributed
to [33, 20] and is based upon the use of the same shape functions for the defini-
tion of the reference maps and for the approximate solution of the problem. It
has to be noticed anyway that no relation between reference maps and approx-
imate solution exists. For lowest-order elements:

Definition 2.10. Let zg, : K — K,, be of the form

Nen—1

z(6)= Y via™
=0

Nx

where x; is the i*" node of the element K,, and v% is the i*® nodal shape
function. If the element interpolation function uj , can be written as

unp (€)= Y via™ (2.7)

where ﬂgm) is the i*? degree-of-freedom of the element K,,, the element is said

to be isoparametric.

2.2.2 Nodal elements and convergence of the Galerkin
method

A fundamental condition when building nodal elements is that it is desirable
(and in practice necessary) that nodal elements are designed in a way such that
as the mesh is refined, the solution of the Galerkin method converges to the
exact solution. This happens when the refinement generates a situation like the
one reported in 2.1.1.

It is possible to enunciate three conditions, which are only sufficient and not
necessary, for the convergence of the Galerkin method. Shape functions need to
be:
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Condition 2.11. smooth (C! shape functions) on the element interior;
Condition 2.12. continuous on the boundary of each element;
Condition 2.13. complete.

Condition 2.11 and 2.12 guarantee that the first derivatives which are to be
computed exist. Guaranteeing C° at the boundaries means we will have, at
worst, finite jumps in the first derivatives. If we permitted discontinuities, we
would have deltas in the derivatives and squares of the delta function would
appear in the calculation of the stiffness integral. The completeness property
requires, instead, that the element interpolation function is capable of exactly
representing an arbitrary linear polynomial (when considering lowest-order ele-
ments) when the nodal degrees-of-freedom are given values in accordance with
it. Completeness is reasonable when thinking that, as the mesh is refined, the
exact solution approaches constant values over an element. This property as-
sures that constant and linear functions can be represented.

2.2.3 Convergence of isoparametric elements

Definition 2.14. A mapping xg,, :~f( — K,, C R? is said to be one-to-one if
for each pair of points &, and &, € K such that &; # &,, then x (§;) # = (&5).

Definition 2.15. A mapping zg,, : K — K,, C R? is said to be onto if
K=z (K).
As a consequence of the inverse function theorem, if ¢, is:
Condition 2.16. one-to-one;
Condition 2.17. onto;
Condition 2.18. C* k> 1,

Condition 2.19. J,, (£) >0, V€ € K,

then the inverse mapping 5 = a:l_(}n : K, — K exists and is C¥.

Proposition 2.20. Let the reference map satisfy all the conditions from 2.16
to 2.19. Then the smoothness requirement of point 1 is satisfied as well.

Remark 2.21. In practice, the mappings satisfy all the points from 2.16 to 2.19,
with the exception of mappings defining degenerations with coalesced nodes,
like the case of the triangular domain, which is seen as a quadrilateral with a
edge of length 0. In this case Condition 2.19 is not satisfied, in fact the Jacobian
determinant vanishes at certain nodal points. With the exception of these points
however, the mapping £ remains smooth.

The third convergence condition is verified if the following proposition holds.

Proposition 2.22. If Zivzﬁg*l v% =1, then the completeness condition is sat-
isfied for isoparametric elements.
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Proof. Supposing d = 3 (the same holds for other values) and lowest-order
elements

Ne'n,_l g
vnp () = Z vE Ui,

=0

Nen_l

- Z ”5{ (CO + Clxz('m) + CQyZ(m) + 03,2(’”)) ,

%
1=0

Nen—1 Nen—1 Nen—1

=0 =0

Nepn—1
+c3 ( Z v%zﬁm)> ,
i=0
Nen—1
= (g < Z v%) + 1o + ey + c3%,
i=0

by using both the definition of reference map and nodal interpolant. O

The convergence condition 2.12 has to be verified case by case, but it is quite
simple to satisfy.

2.3 One-dimensional problems

As a simple introduction to the framework, one-dimensional problems are pre-
sented. In 2.4 this presentation will be generalized to two-dimensional problems.

2.3.1 Analysis with lowest-order elements

We start from the weak formulation for a one-dimensional elliptic problem,
which is the same written in a more general form in (1.13):

a(v,p) =1(p), Yo e H (Q) (2.8)
with
a(v,¢) = /Q (@10 - ¢’ + aguyp) dz

b
L(p) = /Q (fo—ary - ¢ —aoye)de + [ar (v+7) @],
equipped with the boundary conditions
v=0,Vrelp

(w+7v) =gy, Vz ey
where u = v+ v and v = gp in I'p, a sequence of steps is needed to get an

approximation.

University of Padua Faculty of Engineering




34 CHAPTER 2. FINITE ELEMENT METHOD

Mesh In one dimension, the domain €2 can be as the open interval (a, b), which
can then be partitioned in M,, intervals

a=ZTon <...<TM,n= b.
These intervals form the so called mesh of the domain €2 in one dimension
Mn - {Kl,n7 R KMn,n}

where

Ki,n = (xifl,n7xi,n)
is the 7*® nodal finite element (described in general form in 2.2) and the z;’s are
called grid vertices. It is also possible to define the mesh diameter h (n) as

h(n)= 151261" (i1 — Tin) -

Application of the Galerkin method The Galerkin subspace V,, C V con-
sists (in FEM) of piecewise-polynomial functions of degree p; > 1 defined on
the finite elements

Ve={veV:ve PP (Ki,)Vi=1,... My,}. (2.9)

A good choice of basis functions consists of functions with small support for
which as many as possible of them are disjoint. This way the term a (v;, v;) is
zero each time v; and v; are disjoint, generating a sparse stiffness matrix, which
is far simpler and more efficient to handle by computers.

The most used basis for the space V,, is the one formed by M,, — 1 functions
of degree p,,, = 1, ¥m defined by (suppose from now on that every z; and K; is
referred to the current mesh so that x; = z; , and K; = K, ,,):

T — T _
7217 x € Kz
Ti — Ti—1
LTit1 — X - .
vi(e)={ HHTT R, i, My -1,
Tit1 — T4
0, {ze(ab)|r¢KiVae ¢ K1}
(2.10)
The shape functions
To— T
Vo= ——, xoﬁxﬁxla
1 — o
T—zx
UM, = — TM,—1 ST < T,

TM, — TM,—1
are related to the boundary nodes. All these functions are called hat functions
or roof functions and, when used in FEM, are named basis or shape or vertex
functions. In this case the space V,, is a piecewise linear finite element space.
Given this space, the function v,, is written

Un = Z ViVi,
i€G\Gp
where

G=1{0,...,M,},
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GD:{i|i:0,...,Mn, (L'iEFD}.

The system of algebraic equations is written with the following matrices

S, = |:/ (alvg . ’U_; + ao’Uin> d$:| y (211)
Q ,J
Tn = [’Dl]z’
F, = {/ (fvi — a1y - v; — apyv;) de + [“1 (v+ 7)/1’1']1;] ’ (212)
Q [

where i, j € G\Gp. A possible choice for = is
y(@) =Y ulw)v ().
i€Gp

The ' nodal finite element is therefore defined by the triple (Ki, PY(K;), E)
and is called lowest-order element.

Example 2.23. Consider the problem of solving

=0, 2€Q=(0,1)
w(0)=0
u(l)=1

It is possible to find a classical solution u € C? () N C (Q) integrating twice

both members:
// o' dxdx = // Odzdr = u (z) = c17 + ¢
Q Q

and then imposing the boundary conditions:

u(x)=cx+c, z€N=(0,1)
u(0)=0 =u(z) = (2.13)
u(l)=1

The problem is equipped with nonhomogeneous Dirichlet boundary conditions,
so it is necessary to define a Dirichlet lift 4 and the new function v so that
u =+ v. A possible choice for ~ is

’}/:0'1)0+1~1)Mn,

where vg is a roof function centered on the left boundary of 2 and vy, a roof
function centered on the right boundary of 2. By substitution in Equation
(2.14) the new problem reads (u = u (z) and v = v (x)):

(7+U)N:O7 er:(Oal)
v(0)=0
v(l)=0

It is possible furthermore to derive a weak formulation of the problem following
the four steps of sub-subsection 1.4.1. Multiply by ¢ € C§° (Q):

(v+v)"p=0.

University of Padua Faculty of Engineering




36 CHAPTER 2. FINITE ELEMENT METHOD

Then integrate over €:
/ (v +v)" pde =0
Q

and reduce the maximum degree of the derivatives using the technique of inte-
gration by parts? :

/Q(W+v)" pdz = [p(y+0)],q —/Qw' (v +v) da.

Making use of the last equation and since ¢ € C§° (£2) vanishes on the boundary,
the equation can be simplified to

1 1
/ v'dx = —/ o' (2.14)
0 0

It is necessary now to use the Galerkin method to obtain a discrete problem from
(2.14). Approximating the problem in a subspace V;, with dim (V;,) = M,, — 1

we get the matrices:
M, —1

1
Sn = |:/ U:U;dflf:| y
0 ij=1

T, =0t

1 M, —1
F, = [—/ vh’dm} :
0 i=1

where the v;’s are the roof functions defined in (2.10). If a partition of the
domain (2 with M,, —1 internal nodes is built, then the linear system S,, - T, =
F',, can be solved for T,,. The approximate solution is then

M, —1
U, (x) = Z O (x) + 7.
i=1
In this particular case, u, = u.
Consider the problem

1
%w/’:x,xGQ:(O,l)

u(0)=0
u(l)=1

The same procedure of Example 2.23 can be followed to obtain the exact solution
and the discrete formulation. The exact solution is

u(z) = g (252% — 22) .

2If f (z) = f and g (x) = g are two continuously differentiable functions then:

/a " fo'de = [fgl) - / " ' gda.
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Figure 2.1: Representation of the exact solution (red curve) and of the approx-
imate (black curve). The plot at the bottom represents the basis functions v;
used in FEM.

If a mesh with three elements is considered, the linear system is S,, - ¥, = F,

where
2

b
S, = {/ —v’-v’»dx} ,
oo 50T

T, = [0

=1

2

! 1
F, = [/ (:wi + vé’y’) dm} )
0 5 i=1

Figure 2.1 represents the exact solution compared with the approximate.

2.3.2 Transformation of the model to the reference do-
main

Once the stiffness matrix and the force vector are found, like in Equation (2.12)
and (2.11), it is sufficient to compute the integrals (typically approximation
methods can be used) and solve the linear system. However, that of Subsection
2.3.1 is a very simple case, in which we were able to define all the shape functions
and it is easy to compute the integrals. There are cases in which it is not simple
to define the shape functions and it is more efficient to change the formulation
using a reference map like stated in Subsection 2.2.1. We can try to do this for
this simple case as well.

So, our task is to define the reference map =g, : K, — K,, where K, =
(€0,&1) = (—1,1) is our reference domain. Currently, our vertex functions on
the reference domain can be simply found (they are piecewise-polynomials, and
in this section we employ a degree 1), and are

e AR

o, (€)=~ >

2
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Once the shape functions are defined on the reference domain, the isoparametric
concept can be invoked, and we can express the reference map with

1
i, (€) =D _vi, (&) Zim.
=0

The result of this summation can be written as
T, (§) = ™ + M,

where N
Cg ) = 12 ) Cé ) = JKm - )

supposing K, = (£m—1, Tm) as said before.

2.3.2.1 Finite element space

With the reference map, it is possible to redefine the space V,, defined in (2.9),
(the notation with the n is left for the notation with h = h(n) to remark the
relation to the chosen mesh)

Vh)p = {U eV: ’l)|Km € prm (Km) VYm = 1,2,...,Mh}p}
with

Vip={veV: (v

Kn 0 TK,,) (§) € PP (Ka) Vm =1,2,..., Myp},

i.e. Vp p is the set containing all the functions in V' defined in each domain K,,
which, once transformed to the reference domain, is a polynomial of degree p,,
on K,. As stated above, it is no more needed to define shape functions on each
domain. It is only necessary to have one reference map for each domain ad a
set of shape functions on the reference domain.

2.3.2.2 Transformation of the equation to the reference domain

Consider again, for instance, the model of the problem (1.13): the next step is
to transform the weak form to the reference domain, so as to take advantage of
the reference map. The bilinear and the linear forms can be calculated using
the two following integrals:

a(v,p) = / (a1 - " + apvy) du,
Q

1(90):/Q(fwfaw'w’*aow)dm+ a1 (v +7) @]

The first thing to do is to divide the integrals into a summation over the
elements as Q = [ JM"r K,

m=

My, p

a(v,p) = Z / (a1 - @' + aguy) dz,
m=1"K

m
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My, p
L(p) = Z/ (fo— a1y - ¢ — agyp) dz + [ar (v +7) ..
m=1"Km

Then, using the result (2.4) of the Galerkin method, the problem can be rewrit-
ten to: find the function vy, p € V3, (2) so that

Upp = E V4,

i€G\Gp

where

span ({u; 111457 ) = Viup ().
and

My, p

Z Uj Z / (a10jv; + aguiv;) da =
Km

1€G\Gp m=1

Mhyp

= Z / (fv; — arvjvfy — agyv;) + [a1 (v + 7)'1;]-]2, jeG\Gp.
m=1 m

Transformation of functions to the reference domain Functions are
transformed to the reference domain by simply composing them with the refer-
ence map:

i (€)= (wowk,) (€) = a vk, (©)
3" (©) = (wowk,) (€) = u e, ()
(
(

Transformation of derivatives to the reference domain The transfor-
mation of the derivative can be found using the chain rule

(59 = @ows,) (€) = v} (@) Lo )T (€, L=

(3™ ©) = (rowx,) (€ =7 (&) lomay T ©)

Transformation of integrals to the reference domain The transforma-
tion of the integrals is simple applying the Substitution theorem. The appli-
cation of the Substitution theorem allows the transformation of the bilinear

form
M}'L,p

a(vi,vj) = Z / (a10jv; + agu;v;) da
m=1"K

m

to the reference domain. Let f be

f (@) = ay (x) v (x) v (z) + ao (z) vi (x) v; ().
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We can write

M, p

a(vi,v;) = mE_:l/w

where f can be expressed as

)f(x)dxzmz_ / f @xe (€)) T, dE,

o (B

1 ~(m ~(m ! ~ ~(m)~(m)~(m
f @, (€)= —a™ (8™) (1) + a5 ™™,
TK,,

Following the same process we can write

My, p

b
1) = 3 [ (o, (€) Tow, -+ [ 049 o]
m=1
where g can be expressed as

~ ~(m ~(m) ~(m)~(m ]_ ~(m ~(m /~m,/
(s, (€) = F™ = af 3 + el (50 (5™

m

2.3.3 Exactness at the nodes

It is important to remark that it’s possible to prove that the values found for
the DOFs are exact.

Theorem 2.24. u (z;) = up (x;), 1 =0,..., My p.
Proof. The proof of this theorem can be found in [17]. O

2.3.4 Higher-order elements

It is possible to consider piecewise-polynomials (i.e. polynomials defined on the
elements) of degree higher than 1. The elevation of the degree is a type of
refinement named p-refinement as it should lead to approximations closer to the
exact solution, leaving the mesh unchanged.

2.3.4.1 Lagrange nodal shape functions

The construction of shape functions is an important task in FEM as a wrong
basis could make the solution of the linear system difficult. One approach is

that which employs the Lagrange interpolation. The task is to find a basis
P = {lragi:lragis---slagpn+1} in the space PPm (K), defining the shape
functions on the reference domain. The shape functions are associated to an
equal number of nodal points defined on the reference domain (suppose it is
K = (—1,1)) using the Lagrange interpolation conditions 144 ; (yx) = djx. The
shape functions can be defined by the equation

ZLag;i(g): H ((5_:%)),221,2,,pm+1
1<) <pmt1,ji i T Yi

Algorithm 2.1 computes the Lagrange interpolating polynomials for the given
points to be interpolated.
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Algorithm 2.1 Algorithm to compute the Lagrange polynomial interpolating

the points provided.

% lagrangePoly determines the Lagrange interpolating polynomial
% interpolating the points prowvided.
% Input :
% X: z coordinates of the points to be interpolated;
% Y: y coordinates of the points to be interpolated;
% XX: optional argument to get the wvalues of the polynomial in the
% values contained in the vector XX.
% Output :
% P: coefficients of the polynomial in highest order first;
% R: z coordinates of the N—1 extrema of the resulting polynomial;
% S: y coordinates of the extrema.
function [P, R, S] = lagrangePoly (X, Y, XX)
% Make sure that X and Y are row wvectors
if size(X,1) > 1; X = X’; end
if size(Y,1) > 1; Y =Y’; end
if size(X,1) > 1 || size(Y,1) > 1 || size(X,2) "= size(Y,2)
error ( 'both_inputs_must_be_equal—length_vectors’)
end
N = length (X);
pvals = zeros(N,N);
% Calculate the polynomial weights for each order
for i = 1:N
% the polynomial whose roots are all the wvalues of X except this one
pp = poly (X( (1:N) 7= i));
% scale so its wvalue is ezxactly 1 at this X point (and zero
% at others, of course)
pvals(i,:) = pp ./ polyval(pp, X(i));
end
% Each row gives the polynomial that is 1 at the corresponding X
% point and zero everywhere else, so weighting each row by the
% desired row and summing (in this case the polycoeffs) gives
% the final polynomial
P = Yxpvals;
if nargin==3
% output is YY corresponding to input XX
YY = polyval (P,XX);
% assign to output
P = YY;
end
if nargout > 1
% Ezxtra return arguments are values where dy/dz is zero
% Solve for z s.t. dy/dz is zero i.e. rToots of derivative polynomial

% derivative of polynomial P scales each power by its power, downshifts

R = roots( ((N—1):—1:1) .%x P(1:(N-—-1)) );
if nargout > 2
% Calculate the actual values at the points of zero derivative.
S = polyval(P,R);
end
end
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Figure 2.2: Example of the effects of the Runge’s phenomenon. Langrange
interpolating polynomials interpolating 4, 5 and 6 points.

2.3.4.2 Runge’s phenomenon

Analyzing the function
1

T@) = s
Runge found that, interpolating at equidistant points between —1 and 1 with

polynomials P, (z) of increasing degree n, the interpolation oscillates towards
the end of the interval. It can be proven, in fact, that

Jn (L 17(0) = Pa(o)]) =+

An example of the effects caused by the Runge’s phenomenon can be seen
in Figure 2.2. However, the Weierstrass approximation theorem turns out to be
useful in this regard:

Theorem 2.25. Suppose f is a continuous complez-valued function defined on
the real interval [a,b]. For every € > 0, there exists a polynomial function P
over C such that for all z in [a,b], we have |f () — P (z)| < €, or equivalently,
the supremum norm ||f (x) — P (z)| < € . If f is real-valued, the polynomial
function can be taken over R.

This means there is some sequence of polynomials for which the error goes
to zero. So, using equidistant nodal points is a possible solution, but there are
better choices: Chebyshev nodal points and Gauss-Lobatto nodal points.
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2.3.4.3 Chebyshev and Gauss-Lobatto nodal points

Assuming we want to define nodal shape functions of degree p,, > 1 in the
domain K = (—1,1), the Chebyshev points are defined by the equation

) )
yj:COS<p>aj:07]-a"'vpm7

whereas the Gauss-Lobatto nodal points are the roots of the function

(1 — 1:2) L (z).

Pm

The function L, () is the Legendre polynomial of degree p,, which can be
calculated using the Rodrigues’ formula

I Sl (Gt V)
T2 ! dxpm ’

L, (z) (2.15)

The Legendre polynomials are the solutions to the Legendre differential equation

% ((1 _xQ) : %Lk ($)> +n(n+1)Lg(z) =0.

This ODE is commonly encountered in physics and other technical fields.
Shape functions associated with grid vertices are called wverter functions,
shape functions associated with nodal points are called bubble functions.

Nodal basis of the space V},, Given the nodal shape functions l14g4; (£),
1=1,2,...,pm+1, it is possible to redefine the choice for the Galerkin subspace
Vh.p- It is common to assume that all nodal finite elements have the same degree,
but this is not mandatory, so suppose it is p,, for the nodal finite element K,,.
A basis of the space can be made up by My, , — 1 vertezx functions (Mp,, is the
number of nodal finite elements)

(lLag,pmH o x;(l) (), zekK;
v = 1
(lLag,O o Z‘KiJrl) (l‘) N T e Ki+1

Mp,p
m=1

and by the ) (pm — 1) bubble functions

(lLag,g o J:I_(}n) (z), (lLag,3 o x}}n) (z), ..., (lLagmm o x[_(}n) (x).

2.3.4.4 Lobatto hierarchic shape functions

An alternative way of building a basis is to use a hierarchical approach: an
initial basis is defined, and bases of higher dimension are built adding functions
to the previous basis defined. An example of good hierarchic shape functions
for elliptic problems in one dimension are the Lobatto polynomials

1-¢ _1+¢

9 9 lLob,l (5) - )

lnobo (&) = 5

13
lobie = / Ly_1 () dy, 2 <k,

-1

where Lj_1 is the Legendre polynomial which can be calculated using (2.15).
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Nodal basis of the space V), As already done for the Lagrange shape
functions, once the functions are defined, a new space V} , can be constructed.
The nodal verter functions are defined by the equation

v; (T) =

(ILob1 o x[_(i) (z), z € K;
lLob,O (e} wf_(1+1 (l’), T € Ki+1 ’

which indicates they are linear functions, the nodal bubble functions are defined
by

(lLob,z o x;(}ﬂ) (z), (lLob73 o 9:]_(;) (), ..., (lLob,pm o "El_(in) (x).

2.4 Two-dimensional problems

In most cases problems are not one-dimensional but two- or three-dimensional.
We have, therefore, to define new elements to partition the geometry (simple
intervals can be used only in one-dimensional problems).

2.4.1 K;—elements

The Ké-element is a well known nodal finite element used to create meshes on
two-dimensional domains.

Definition 2.26. A Ké-element is a nodal finite element defined by the triple
(K,Q' (K),L) where:

e K is a quadrilateral domain;

e Q! (K) is the space of the polynomials of first degree defined on the domain
K;

e [ is the set of degrees of freedom.

We need to define in particular the ICé—element on the reference domain as
required by the concept explained in Subsection 2.2.1.

Definition 2.27. A Ké—element defined on the reference domain is the element
Kb defined by the triple (K,, Q" (K,), L,) where:

o K, is the domain (-1,1)%;
o Q' (K,) = span ({1,&n,&n});

o L, = {Li}?:l where g € Q' (K,) and L; : Q' (K;) — R are

University of Padua Faculty of Engineering




CHAPTER 2. FINITE ELEMENT METHOD 45

Lemma 2.28. The nodal finite element (Kq,Ql (Kyq) ,Eq) is unisolvent, and
the nodal basis of the space Q' (K,) consists of the vertex functions

vﬁ(lq (é) — (1 — 5)4(1 — 77)7 U%q (E) — (1 + 5)4(1 — 77)’
,U%sq (6) _ (1 — 5)4(1 + 77)7 v%q (é) _ (1 + 6)4(1 + 77)

Proof. The unisolvency can be proved by building the generalized Vandermonde
matrix L, which is found to be nonsingular. The nodal basis can be obtained
by computing the inverse of L. O

We want to create the change of coordinates

by way of a reference map xg,, : K; — K,,. It’s time to invoke the isopara-
metric concept defined in Sub-subsection 2.2.1, adapted to the two-dimensional
problem. This means we would like to define the reference map through

4
i, (€)=Y v a™. (2.16)
i=1

Proposition 2.29. The reference map of Equation (2.16) satisfies

ek, (&) =z, i=1,2,....4

and
Tk, (€) =5, i=12,...,4

where e; is the edge of the element in the reference domain and s; is the edge of
the element.

Proposition 2.30. The nodal finite element (Km, QY (K,) ,,Cm) 1s unisolvent,
and the shape functions

i (m) = (vfgq o:cf;}n) (), i=1,2,... 4,

constitute a unique nodal basis of the space Q' (K,,).

We want to determine if this element guarantees the convergence of the
Galerkin method. For this, we need to guarantee smoothness of the basis func-
tions, continuity on the boundary and completeness (see 2.2.2).

As said in Subsection 2.2.3, smoothness are almost always assured, unless
the element is too distorted. The degenerated triangle was an example case,
but even quadrilaterals with interior angles of more than 180° can make this
condition to be unsatisfied. This is caused by the fact that the inverse functions
¢ (xk,,) and n(xk,,) of the reference map could be not well defined. Away
from these cases of high degeneration, Ké—elements guarantees smoothness of
the shape functions.
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We have to analyze the shape function to assure continuity on the boundary.
Let’s consider, for instance, the shape function defined on the node &; on the
edge with n =1

1-¢

Uf(lq (&) = 9

This is a one-dimensional linear shape functions already defined, and the same
holds for the other edges. After these considerations of the shape of the function
on the edges it is possible to guess that the shape function is an hyperbolic
paraboloid, which guarantees continuity on the boundaries.

Proving the completeness is very simple: according to 2.2.3 it is sufficient to
prove the sum to 1:

4

S - 1-9d-n (A+H0-n)

4 4

(1-90+n  (A+HQA+n) _
+ 1 + 1 =1.

2.4.2 K/-elements

Another type of well known element in the two-dimensional space is the K}-
element.

Definition 2.31. A K}-element is a nodal finite element defined by the triple
(K,P'(K),L) where:

e K is a triangular domain;

e P! (K) is the space of the polynomials of first degree defined on the domain
K;

e [ is the set of degrees of freedom.

We need to define in particular the Kj-element on the reference domain.
One of the possibilities in the definition of a triangular reference domain is the
triangle derived from the degeneration of the domain K, where the nodes &5
and &, are coalesced into one node &5 = [0, 1]T. In this case, the resulting shape
functions are

R el ACRE T L JOR

Although the determinant of the Jacobian matrix is zero in &5, the derivatives
exist with respect to £ and n. This is sufficient to have smoothness. In the same
way we did in 2.4.1, it is possible to show both continuity and completeness. This
means such a reference element assures the convergence of the Galerkin method.
Anyway, it has to be underlined that the determinant of the Jacobian matrix is
not constant. This means that, when integrating on this element, the Jacobian
has to be integrated numerically, and is rising the degree of the integrand, which
requires more integration points in Gauss quadrature (see Section 2.7).
Another possibility for a reference element is the following:

Definition 2.32. A Kj-element defined on the reference domain is the K}-
element K" defined by the triple (K, P' (Ky), L) where:
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o K, = {[évn]T tn<&m>-1,{> _1};
[ ] Pl (Kt) = Span ({17£a77})’
o Ly = {Li}?:l where g € P (K;) and L; : P' (K;) — R are

Lz(g):g(éz)’ 7;:1?273’

61{:”752[—11}’53{_11]'

Lemma 2.33. The nodal finite element (Kt,P1 (K3) ,Et) is unisolvent, and
the nodal basis of the space P! (K;) consists of the vertex functions

L §+n 1+¢ & 1+n
Vi () = =25 R () =~ v (©) = —
Proof. See proof of Lemma 2.28. O

As we did in the case of the Kévr—element, we have to define the reference
map. This is simple to do; invoking the isoparametric concept we get

3
wx,, (€)=Y v (&)™, (2.17)
1=1

and again the following proposition holds:

Proposition 2.34. The reference map of Equation (2.17) satisfies
TK,, (51) = wgm)? i = 17 2a 3

and
me (61) = S;, Z = 1,2,3

where e; is the edge of the element in the reference domain and s; is the edge of
the element with domain K.

Proposition 2.35. The nodal finite element (Km, P (K,,) ,L’m) 18 unisolvent,
and the shape functions

2™

v (x) = (Uf(if, oa:l_(in) (x), 1=1,2,3

m

constitute a unique nodal basis of the space P! (K,,).

Again, it is interesting to prove that the element IC; guarantees the conver-
gence. The continuity across the boundaries can be verified the same way it was
done in Subsection 2.4.1. The condition of completeness is automatic as this is
an isoparametric element. What’s important to note is that the determinant of
the Jacobian matrix is now constant

Ti2— %11 1,3 —2T11

Jor, = 2
TKm T2 —T11 T23— T21
2 2
where it is assumed x; = [z1,;,22;]. This is a better choice as, this way, the

determinant of the Jacobian matrix doesn’t have to be integrated numerically.
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2.4.3 Analysis with lowest-order elements

Problems in two dimensions need some more steps than one-dimensional prob-
lems. The reference problem expressed in the equation (1.10) is again translated
to its weak formulation in (1.13): find a function v € H! () such that

// (a1 Vv -V + agvy) dz =
Q

// (fo—a1Vy - Vo —agyp)dz +/ (argnp) dS, Yo € H' ().

What is needed is a process which goes through the approximations needed
to generate the linear system of equations S - ¥ = F. Unfortunately, in the
two-dimensional case, some approximations are needed to reach the discrete
problem: these approximations are called variational crimes.

Approximation of the domain A 2D domain ) needs, in general, to be
approximated with a domain . If 2 is a polygonal domain or if the boundary
0f) is piecewise-polynomial, then the approximation can be done exactly. In
case ), ¢ ©, then a variational crime is committed since the functions could
be evaluated where they are not defined.

Mesh The domain 5 has to be covered with M}, elements
Mpp={K;i=1,...,.Mp,}.

My, p is the mesh defined on the domain.

Approximation of the boundaries In the first step it was necessary to
modify the domain (2 creating another domain €y, ,,. This means the boundary
0 can be different from the new boundary 09 ,. A new variational crime
arises in case 00 # 0, as the functions gp and gy defined respectively
in (1.7) and (1.9) could be undefined on 0 ;. It is therefore necessary to
redefine gp and gy on the boundaries of €2, choosing a new suitable partition
0 p =TpnpUILNhp. The new boundary conditions can be now written:

u(2) =gpnp(2), V2 € Dy,

Ou (z)
Ov

The Dirichlet lift needs to be approximated as well with a new function -, €
' (Qh,p)-

= JgN,h,p (Z) s Vz € FN,h,p~

Approximation of the Hilbert spaces The space V' on which the problem
is formulated is defined on the domain 2. This means it is necessary to redefine
the space with another one,

Vip={v e C(Qyp):v(z)=0,Vz €Tpyy,
v|k, € PP (K;) if K; is a triangle,
v|lk, € QP (K;) if K; is a quarilateral} . (2.18)
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defined on the approximated domain €, ,. Unfortunately, it is not possible to
guarantee V3, C V as the Galerkin method requires, so that it is possible that
another variational crime is committed. The same happens to the trial solutions
space:

Uh,p = {11 S C(Q}hp) tv (Z) = 9D,h,p> Vz € FD.h,p,

v|k, € PP (K;) if K, is a triangle,
v|k, € QF (K;) if K; is a quarilateral} . (2.19)

Approximate weak formulation It is necessary to approximate the weak
formulation according to the modifications done so far to the model of equation
(1.12): It’s now required to find the function vy, € V3, and vy, € Uy, so that

// (a1Vup,p - Vo + agup pv) dz =
Q

h,p

I

Application of the Galerkin model The Galerkin method remains almost
unchanged: it is possible to express the unknown function vy, , as a linear combi-
nation of the basis functions of the space V}, ;, not related to nodes with Dirichlet
boundary conditions. We define

(fv—a1Vynp - VU — apynpv) dz + / 19N, h,pvdS, YU € Vi p.

h,p I'n,np

G = {i|v; € a nodal base of V3, ,,},

Gp = {i|v; € anodal base of Vj, ,, ; €Tpppt-
The unknown vy, 5, is then
Uhp = Z ViV,
i€G\Gp

and the Dirichlet lift can be written as well as

Yhp = Y gD.hp (T:) Vi,
i€Gp

assuming vy, . . ., Udim(v;,,) 15 a nodal basis of the space Vj, , with dim (V}, ;,) =
N, p. The new problem is now expressed by the system

Z U5 // (a1 Vv; - Vuj + agv;v;) dz =
Qnp

1€G\Gp

// (fvj —a1Vynp - Vuj — aoynpvj) dz + / 19N, h,pV;dS (2.20)
Qn.p T'nhp

for all j € G\Gp. We can notice as well that we can substitute the choice made
of Dirichlet lift

Z U // (a1Vv; - Vvj + agvvy) dz =
Q

iGG\GD h,p
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// fvjdz — Z //Q a19p.n,p (i) Vv, - Vudz+

i€Gp

- Z [/ a09gD,h,p xz) 'Uz'l)jdz—f—/ a1gN’h7p’Ude.
Qp T

i€Gp N,h,p

for all j € G\Gp.

2.4.4 Transformation of the model to the reference do-
main

Like done in Subsection 2.3.2, we would like to use the reference map to work
with the model in the reference domain. For both the ICl elements and the
K}-elements we've already defined the reference maps. Let’s assume an hybrid
mesh with M}, , = M, + M; nodes, where M, is the number of IC; elements and
M; is the number of lC,}—elements7 a set {azi, i=1,...,Np,p} of grid vertices
that don’t belong to I'p ., (unconstrained grid vertices).

Proposition 2.36. The dimension of the space Vi, is Ny, which is also the
number of unconstrained grid vertices.

2.4.4.1 Basis of the space V},,

We already defined the space we're working with in Equation (2.19), but we
need a basis for this space. This is a little more complicated than in the one-
dimensional case: first of all we need to define a vertex patch S (i), which will
be the support of the shape function. It is defined as the union of all the mesh
elements which have x; among their nodes:

U Ky, N (i) = {m: K,, € My, ,x; is vertex of K,,}.  (2.21)
kEN (i

Employing the same concept of the one-dimensional case, we define the shape
functions to be

fufg o a:K1 (x), «€ K, and K,, is a quadrilateral
v (@) = vf(t ° iEK}n (), «e€ K, and K,, is a triangle - (2.22)
0, xeQp\S>H)

It can be shown that these vertex functions form a basis for the space V} ;.

2.4.4.2 Transformation of the equation to the reference domain
Just like we did in Sub-subsection 2.3.2.2, the first step is to split the integral
of Equation (2.20) as a summation over the elements K,,:

My, p

Z U, Z // (a1 Vv; - Vuj + aguv;) dz =

i€G\Gp m=1

My, p Mp,p
Z / (fvj —a1Vaynp - Vu; — agynpvj) dz + Z / _a1gN,hpv;dS,
I'non pﬂK

(2.23)
j € G\GD
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Transformation of functions to the reference domain The transforma-
tion of the model requires first of all to transfer the function to the reference
domain. This is done again, like in Sub-subsection 2.3.2.2, composing functions
with the o operator with the reference map zg,, (§) = (zk,,1(€), 2K, 2 (£)).
For a function v (§,1) = 9 (£), this results in:

™ (&) = (Yoxk,) (€) = (xk,.1(£), 2k, 2 (£))-

Transformation of derivatives to the reference domain Again, like in
Sub-subsection 2.3.2.2, the chain rule is used:
N

() o Ok, 1 Ok, o
o€ ( ) = aix|w:wxm (5)875 (’S) + 87y|cc:ackm (ﬁ)Tf (5)

oy

opm oy Ork OrK,, 2

77l)1 moy
877 ) = 9z |w:wkm (ﬁ)Tn (5) + Ay |w:me (&) an (5) .

This result can be written in matrix form so that the Jacobian matrix (defined
in Definition B.3) can be recognized:

Hp(m) Org, 1 OTk, 2 o o[ oY
e | _| oe ¢ gz | _ (DPrx., dz
opm) | 7| Ork,a O07k,,2 gj B ( D¢ @

an on o % ” (2.24)

(P, /De) is the Jacobian matrix of the reference map g, and is the cor-

respondent of the Jacobian found in the one-dimensional case. So, Equation
(2.24) can be written in more compact form using the gradient

v () = (D gfgm)va ().

If the Jacobian is nonsingular, Vi can be found using

DCL‘K

Vo (2) = (D£> R

T _
DCBKm -7 - DiBKm -1 o D:I:Km T
D¢ a D¢ a Dg
Transformation of integrals to the reference domain Using the substi-
tution theorem it is possible to change the integration domain using the results

above and the fact that zx, (f{) = K,, where K is either K; or K,. The left

member of Equation (2.23) can be transformed to

where

Nh,p Mh,p

Z Uy Z // ) (a1 Vv; - Vuj + aguv;) dz =
=1 m=1""TKm

K

PR Dx - Dz -
O g\ [ ZZKm 5(m) fad (678 5(m)
; U; mz::l //}~< Jeg,, (al ( De ) Vo, ) <( De ) Vo, ) d§
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Np P Mh P
DI AR
where [PZxp /De| = Jg, .

2.4.5 Higher-order elements
2.4.5.1 Lagrange-Gauss-Lobatto Kl'"-elements

KP"-elements are the generalization of K;—elements using Lagrange shape func-
tions. Two- and three-dimensional Lagrange shape functions can be obtained
using the product of one-dimensional Lagrange functions. The choice of the
points can be taken accordingly to be the product of Gauss-Lobatto points in
K, being K, = K, x K,. In the case of the quadrilateral reference domain,
each axis direction has a different order of approximation, that’s why these el-
ements are indicated with K", The points can be divided into three groups:
vertez nodes, edge nodes and bubble nodes. Vertex nodes corresponds to the four
vertices of the quadrilateral:

T
g == o] =117, g == [o000) =)

T T
€£$ = 53 — |:$gp)7377(«_~21:| — [_1’ 1]T7 6‘54 — 5‘4 = [371(9121’335-21} — [1’ I]T

where the x(p Vs are the Gauss-Lobatto points of order p and the xET)’s are the
Gauss-Lobatto points of order r, so 2 € K, and z{" € K,. There are r — 1

edge nodes which lie on the edges of the quadrilateral

and can be defined as

- iT ¢ T

‘il — $5P)’xé7') — _1 .Z‘(T) ,

T ¢ T

A P R

- AT ¢ 1T

£, = xip),xg) = —1,1‘5.’”) ,

and correspondingly for the other nodes. The bubble nodes instead, are defined

as T
g = [g;ngl,xggl] =12, p—1,j=1,2,.. .. r—1.

Our task is to determine a nodal basis of the space

QU (Ky) ={"n 1<k <p1<i<r,-1<¢&n<1).
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In the same way it was done above for the points, we can divide the shape
functions in three groups: the vertexr functions, the edge functions and the
bubble functions. Each of them is built using the one-dimensional Lagrange
functions l(Lpa)gmi =1,2,...,p+1 and Z(LTCZng,j =1,2,...,7 + 1 where p and
r are the orders. Each of them are forced to satisfy, as already done in the

one-dimensional case, the delta property

. (o87) = 0

The four vertex functions are
vid (&) =18 () 100, (), vz (&) =18) L (©) 18,1 (),

V32 (&) =18 (€)1 (), v (€)= 1) (€)1 oy (). (2.25)

The edge functions are

021 (€)= 1. () Uy o () (2.26)
vid 5 (€) = 1P (€)1, 5 () (2.27)

~ 2.28)
vt (&) = 1P (€)1, (). (2.29)

The bubble functions are

Ullj(q,i,j (5) = l(Lpa)g,iJrl (g) : lga)g,jJrl (77) 7i = ]-7 27 RERY ]->j - ]-7 27 cees T L.
(2.30)

Proposition 2.37. The Lagrange shape functions (2.30), (2.29) and (2.25)
form a basis of the space QP (K,).

Proposition 2.38. The Lagrange shape functions (2.30), (2.29) and (2.25)
satisfy the delta property and are therefore a nodal basis of the space QP (K,).

2.4.5.2 Lagrange-Fekete PP-elements

Again, we would like to generalize the K}-elements with p*®-order elements using
Lagrange shape functions. We can do this following the same procedure used in
the previous sub-subsection. First of all we have to define suitable and efficient
points for the triangular domain. A good choice in this sense are the Fekete
points. In its original version, the problem consists in determining the position
of N points on a compact subset K C R? that maximize the product of their
mutual Euclidean distances. The Np-tuples (&;,&,,...,€y, ) that satisfies this
property are called N¥ order Fekete points in K. An alternative definition is

Definition 2.39. Let a bounded convex domain KX C R? be equipped with
a polynomial space P (K) of dimension Np. Given an arbitrary basis {191}5\231
of P(K), the Fekete points {Ez}f\fl C K are a point set that maximizes the
determinant

Ly’y7""y = ma. L£7£7"'a€
‘ (1 2 NP)’ {61)527”.)5’;})}C?‘ (1 2 Np)

)
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where L is the generalized Vandermonde matrix for the Lagrange degrees of
freedom L; (g) = g (&,),

L(&. & &) = (L Y0 = {0, (€)™,

The advantage of the Fekete points is that they can be defined on any subset
of R%. Unfortunately, no direct formula for computing them is available, so a
numerical approximation is needed. An algorithm for the estimation of Fekete
points has been recently given in [5].

Again, it is possible to divide the Fekete points in a way such that it is
possible to simply define hybrid meshes of quadrilaterals and triangles. We use
the already defined domain K; with the edges

e1 ={& +t(& — &) [t €[0,1]},

ez ={&; +t (& — &) [t €[0,1]},
ez ={& +t(& — &) [t €[0,1]}.

For the construction we’re going to report, the following theorem is fundamental:
Theorem 2.40. Let p > 1. The Fekete points have to following properties:
1. the Fekete points {yz}f\h’1 are invariant under the choice of the basis {1; }l 1

2. in one-dimensional intervals and Cartesian product geometries the Fekete
and Gauss-Lobatto points are the same sets;

3. on the edges of triangular domains the Fekete points coincide with the
one-dimensional Gauss-Lobatto points.

Using the pt"-order Gauss-Lobatto points xl(-p ) ¢ K, and Theorem 2.40, the
three vertex nodes can be defined by

g =g = [o,af] =117

552 :€ - |: gjzlazgp):l [1a_1]Ta

5 = ¢, = {wgp)’ ;(7121] =[-11"
The edge nodes can be defined following the orientation of the edges e;
T
o= [xép)7 (p )} _ [mgp)7 1} 7
T
o — [xép)wgp)} _ [mgp)7_1} :
. T T
5;1 _ |:$§;p)7$§p):| _ [ml()p)7_1}

The bubble nodes can be sorted in any unique way and are denoted E?,i =
1,1,...,(e=D(@-2)/2 — 1.

The unique Lagrange nodal basis is obtained as stated before, inverting the
generalized Vandermonde matrix defined in Definition 2.39.
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2.4.5.3 Basis of the space V},,

Like it was done before, we have to build a basis for the space V}, ,: this is a sim-
ple task now that we’ve defined the shape functions on the reference domain. We
just have to use the reference map to move the shape functions to the correct do-
main. So, let’s assume we defined an hybrid mesh My, , = {Kl, Ks,...,Ku,, },
where K,,,m = 1,2,..., My, is either a triangular or a quadrilateral element.
What’s important to say here is that it is convenient to assume we use only
KP- or KP-elements, as the approximation could not be continuous in case the
orders were different. Let M; and M, denote the number of KV-elements and of
KP-elements respectively.

We continue to separate the definitions of the shape functions in vertex basis
functions, edge basis functions and bubble basis functions. Each of them are
defined by employing the reference maps already defined in Subsubsections 2.4.1
and 2.4.2 for K}- and K}-elements and the basis functions of the spaces QP (K,)
and PP (K}) defined in Subsubsections 2.4.5.1 and 2.4.5.2.

Vertex basis functions Vertex basis functions can be defined the same way
we did before in Sub-subsection 2.4.4.1. Using the definition of vertex patch of
Equation (2.21) we get the basis functions of Equation (2.22)

vﬁgq o :BK}n) (x), «€ K,, and K,, is a quadrilateral
vf( (x) = vf{t ) ml_(fn) (), =€ K, and K,, is a triangle
0, xz e\ S (%)

In the contest of Sub-subsection 2.4.4.1 those were the only basis functions, but
in the current one, those are only the vertex basis functions. This is simply due
to the fact that we’re dealing with higher-order elements, in which we defined
more points on which other basis functions are to be defined.

Edge basis functions The edge basis functions were not defined in the case
of first-order elements. A procedure similar to that used for the vertex basis
functions can be used. Assume s; is an edge for which xx,, (e;) = s;. We define
the edge element patch, which is the correspondent of the vertex patch, with the
equation

Se (4) = U Ki, Ne(j) ={k: Ki € My, s; is an edge of Ky} .
kEN.(j)

According to our definitions of Kl-elements and K?-elements, each edge s; con-
tains exactly p — 1 nodal points x,},m = 1,2,...,p — 1 for which w;(i (m%) =

—1,.
EZK’“ (SJ). With these elements in hand, we can define the basis edge functions

v%qm o 3”?{1) (), =€ Kj and Kj € Se(j) is a quadrilateral
Ukm = § (VE, .0 w;(i) (), x € Ky and Ky € Se(j) is a triangle 5
0, xTr c Qh \Se (_j)

where v (§) and vy, . (§) are edge nodal shape functions defined on the
reference domain such that

Vit (@ (®50) = 1, v (2 (257)) = 1.

University of Padua Faculty of Engineering




56 CHAPTER 2. FINITE ELEMENT METHOD

Bubble basis functions The bubble functions are simpler to be defined.
Each K?-element contains (p — 1)2 bubble nodes and each PP-element contains

(p=1)(p=2)/2. By using the reference map xg, : K — K, it is possible to define

@) =k, (53)

to be the bubble nodes in the domain K} using an index only, obtained by the
mapping of the bubble points in the reference domain K. The bubble functions
can be defined as

(UZI’(N o 33;(1) (x), if z € Ky, and K}, is a quadrilateral

Ull;(k,m (x) = (U}[’{M o :L‘I_(i) (z), ifxe Ky and K is a triangle

O7 ifCCEQh\Kk

2.5 Three-dimensional problems

There are also elements to be defined for three-dimensional analysis. The sim-
plest element is the brick, but there are also other elements that can be used in
many cases when the brick is not adequate.

2.5.1 K}-elements

Let’s call KL-element the element used to create meshes on three-dimensional
domains (brick element). It’s definition is:

Definition 2.41. A Kk-element is a nodal finite element defined by the triple
(K,B' (K), L) where:
e K is an hexahedral domain;
e B! (K) is the space of the polynomials of first degree defined on the domain
K;
e [ is the set of degrees of freedom.

The definition of the IC}B—element on the reference domain is:

Definition 2.42. A Kh-element on the reference domain is the Kh-element
K" defined by the triple (Kp, B! (Kp),Lp) where:

e Kp is the domain (—1, 1)3;

o B'(Kp) = span ({1,&n,(,&n,n¢, £C, €nCY);

o Lp={L;}>_, where g € B'(K,) and L; : B! (Kp) — R are
Li(g)=9(&),i=12,....8,

-1 1 1 -1
£1 = -1 ) 52 = -1 ) 53 = 1 ) £4 = 1 ;
-1 -1 -1 -1
-1 1 1 -1
55 = -1 ) 56 = -1 ) 57 = 1 ) 58 = 1
1 1 1 1
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As usual we have to design the nodal basis for the element. We accomplish
this task in the proof of Lemma 2.28.

The nodal finite element (KB, B! (Kp) 7LCB) is unisolvent, and the nodal
basis of the space B! (Kp) consists of the vertex functions

1-90=n(A=0 &g 1+HA-=n(1=9)

o2, (€) = 5 2, (€)= g :
g, (€= LFOEDA=0 g (o) 1-90+00-0
g, (€= L=O0_DA40 g o) 1+90-0(+0
g, (€ = LXDUEDALY o (o) 1-9U+0(+0

Proof. We have to build the generalized Vandermonde matrix using the basis
of the space B! (Kp) already defined in Definition 2.42
[ -1 -1 -1 1 1 1 -1
1 -1 -1 -1 1 -1 1
1 1 -1 1 -1 -1 -1
-1 1 -1 -1 -1 1 1
-1 -1 1 1 -1 -1 1
1 -1 1 -1 -1 1 -1
1 1 1 1 1 1 1
-1 1 1 -1 1 -1 -1

= e e e

This matrix is invertible and the inverse is

1 1 1 1 1 1 1 1
-1 1 1 -1 -1 1 1 -1

-1 -1 1 1 -1 -1 1 1

P o e e S S I A I
sl 1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1
-1 1 -1 1 1 -1 1 -1]

This means the element is unisolvent and we can define the nodal basis of this
element by looking at the columns of L™!, O

Now that we know the definitions of the shape functions defined on the
reference domain, it is possible to build the reference map, which is needed to
transfer the shape functions on the reference domain to the various elements
and to build this way a basis of the space V}, ;. In the three-dimensional case
we want to define a change of coordinates of the type
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As already done, the isoparametric concept can be invoked, so that the starting
point is the definition of the reference map through the use of the shape functions
defined on the reference domain:

8
zr, (€)=Y vi ™. (2.31)
=1

Proposition 2.43. The reference map of Equation (2.81) satisfies
wi, (&) =al™ i=12....8

and
Tk, (e;) =8, 1=1,2,...,8

where e; is the edge of the element in the reference domain and s; is the edge of
the element.

Proposition 2.44. The nodal finite element (KB, B! (Kp) ,EB) is unisolvent,
and the shape functions

o (@) = (v, owx! ) (@), i=1.2,....8

constitute a unique basis of the space B* (Kpg).

The same that has been demonstrated before with K, and K; can be demon-
strated for the three-dimensional Kp element. The shape functions show con-
tinuity across boundaries: this could be seen considering the behavior of the
shape function U%B on the face ( = —1

1-61—-n)2 1-¢)(1-
8, 6,1 = 179002 _(1-00-n)
This is an hyperbolic paraboloid and is determined uniquely by the four nodes of
the face, hence, the same shape is guaranteed for any other element of this type
sharing the same surface. Continuity of the shape function is therefore assured.
If the distortion of the element is not too high, the shape functions will be
smooth. The completeness of the shape functions is guaranteed by the fact that
this element is isoparametric. Therefore, this element assures the convergence
of the Galerkin method.

2.6 Higher-order reference maps

We defined isoparametric elements as objects for which a reference map was
built using its shape functions. In the subsequent sections anyway, higher-
order elements have been introduced, which had new types of shape functions
associated with their definition (edge functions and bubble functions). These
shape functions can be used to extend the previous definition to use all these
new shape functions and not only vertex functions. For quadrilateral elements,
for instance:
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Definition 2.45. Let K,, be a quadrilateral element belonging to the mesh

My, p, whose reference element is IC;’T, local directional orders of approximation

pP1, p®2 in the element interior and local polynomial orders p°!, p°2, ..., p° on

the edges. Let x g, : IC;’T — K,,, be of the form

4
— Sab b (e
i=1 o Ka
4 p%i—-1
ez
Z mJ Kq J (5) +
i Jj=
—1p7°—-1

=1 j=1
b b,2

Z Z K1n7n17n2 q7n1,n2 (E) ’

n1: :

where the functions were already defined and are the nodal vertex functions,
the nodal edge functions and the nodal bubble functions. If the element inter-
polation function up, can be written using the same functions combined with
the DOFs, the element is said to be isoparametric. Similar definitions can be
given for any other reference element.

2.7 Higher-order numerical quadrature

The numerical evaluation of integrals is fundamental in FEM as both the stiff-
ness matrix and the force vector are determined in general by computing inte-
grals. In some simple cases, these integrals can be evaluated exactly, but this
cannot be done in general. The problem of obtaining a precise value is nontrivial
and important as, besides obvious effects on the preciseness of the results of the
procedure, it could even affect the solvability of the system resulting from the
Galerkin method, as the matrix may even become singular.

2.7.1 Quadrature on the reference domain K,

The general idea of numerical quadrature is to transform someway the integral
in a sum. Let g (y) be a function to be integrated over [a,b] with a < b

b k
/ 9 W) dy ~ Y Akig (ki) (2.32)

=0

where k is the order of the quadrature, the A; ;’s are the quadrature coefficients
and the y; ;’s are the quadrature nodes. However, all our integrals are evaluated
over a specific domain, which is the reference domain. We did this by using an
affine reference map (see Subsection 2.2.1). The integral of Equation (2.32) can
be transformed to the reference domain K, as we’ve already done

1 k
[ 1 ©de~Y w6
-1 i=0
We followed the Substitution theorem so f (§) = g (vk,, (§)) and wy. ; = Ar.i/|Jay |-
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A possible way of choosing quadrature nodes and coefficients is that of the
Gauss quadrature. The k-point Gauss quadrature reads

1 k
/ FOAER D wid (6.
- =1

This means we have to determine 2k parameters: k weights and k nodes. This
can be done by solving a system of 2k equations which has to be solved for the
weights and the nodes: we can use 2k functions whose integral is known, like
the polynomials 1,&,€2,...,£2%71 to create the nonlinear system of equations

1 k
[ e = > w,
-1 i=1

1 k
/ £dg = Zwk,ifk,m
-1 i=1

1 k
- 2k—1
/ S S
-1 i=1

Once this system has been solved, both the & ;’s and the wy;’s have been
computed. As, according to the construction, this method can integrate all the
polynomials 1,&, &2, ..., 62~ which forms a basis of the space P?*~1 ((—1,1)),
it is simple to see that it can integrate exactly all the polynomials in that space.

Proposition 2.46. Using the k-point Gaussian quadrature rule it is possible to
exactly integrate any polynomial of degree d < 2k — 1.

Proof. Suppose we want to integrate over (—1, 1) the polynomial p (§) = Z;l:o a;&l.
So, we want to compute

1 d 4
/ > a;glde.
_1j=0

This can be rewritten using the linearity of the integral

1 1 1
ao/ £0d§+a1/ 51d5+...+ad/ e,
—1 -1 -1

and transformed by substitution to

k k k
d
aoE Wi + a1 E wk,iék,i+---+ad§ W& i
=1 =1

i=1
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With simple algebraic manipulations

1 d k k k

' d
/ E a;§’d§ = ag E W, + ax E Wik + ...+ aq E W, i€} ;
—1j=o0 i=1 i=1

i=1

k k k

_ d

= wiia0 + ) W a1+ ..+ Y Wk iadd
=1 =1

i=1

k
= Z wk,j (ao + algk}i + “ee + adglccl,i)
i=1
k d ,
= Z Wi, 5 Z aj’fi,i
i=1 Jj=0

k
= D> w8,
=1

we prove the exactness of the computation on the domain K, = (—1,1). Using
one of the designed reference maps and the Substitution theorem it is possible
to extend the same to any domain. O

It is moreover possible to prove that the integration points are the roots of
the Legendre polynomials Ly, (£), which can be calculated with Equation (2.15)
and that the weights can be calculated with

2
(1-¢.)m©*

Wk,i =

)

This is an interesting result as the roots of the Legendre polynomials are quite
well tabulated.

2.7.2 Quadrature on the reference domain K,

The Cartesian product can be used to obtain an integration formula for two-
dimensional domains like K, = K, x K,. If we integrate on K, with the formula

| 5@ dexY wn it ().
Ka i=1

we can extend this to integrate exactly all the bivariate polynomials of degree
di < Qngl) — 1 on the £ axis and d; < 2n((12) — 1 on the 7 direction:

//Kgg(f,n)dﬁdn

| n

Z g (ﬁng)’i, 77) w, q) ,dn

—1i=1
7L<a2) n((ll)

DD W w9 (5n&” i T J) '

j=1i=1

Q

Q
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Example 2.47. Consider the integral which arises when computing an element
of the stiffness matrix of a two-dimensional problem. A possible form of this
integral could be f_ll f_ll £2n2dédn. Exact integration on this yields

Using, instead, a two-point Gauss quadrature

[ ] e = [ (s () +o- () ) o
(@) ()

Ok Wl

2.7.3 Quadrature on the reference domain K,

The integration on the triangular domain K; needs a translation to the domain
K, in order to perform the integration using the Gaussian quadrature. The
following proposition illustrates how to perform the integration of a function
defined on Kj;.

Proposition 2.48. Let K, be defined on the & = [&1,&2]-plane and K, be defined
on the m = [n1,m2]-plane. Let g (&) be a function defined on the reference domain
K. Then it is possible to transform the integral over K; to the integral over

K,:
//th(s)ds_//Kq 127729(1+12”2(m+1)7n2>d,7.

Proof. The proposition can be proved using the mapping

(I=m2)(m+1)
2
72

Em)im—e=| 17T

and the Substitution theorem. O

Once the transformation has been accomplished, it is possible to use what
already explained in Subsection 2.7.2.
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2.7.4 Quadrature on the reference domain Kp

Once again, the same extension used in Subsection 2.7.2 can be used to integrate
over the brick Kg. So

n(®
I o€ncracanac =~ [ S (g0 0m¢)wp dndc
K3 K?i=1
nl(ll) 711(12)
~ > D9 <5n£}>,w @ 3o C) Wom W@ ;A
Ka j=1 j=1

n® n@ p®

Z Z Z g (gnff) REOTSRE Cnff”,l) WD 0n (@ W -

i=1j=11=1

Q

Here again, it is possible to integrate exactly every polynomial of three inde-
pendent variables up to degrees Qngl) -1, 2n((12) — 1 and 271513) — 1 in the three
variables by choosing n((ll), n((f) and nt(f’) as orders of integration in the three

directions.

2.7.5 Choice of the order of numerical integration

When performing numerical integration in finite element analysis, two funda-
mental problems arise: how many integration points and what kind of numerical
integration should we choose? The Gauss numerical integration presented so far
has proved to be very efficient, requiring, considering the same precision, less
function evaluations than other methods. However, there are cases where other
numerical methods of integration could be useful.

Having chosen the Gauss integration method, it has already been explained
how to determine both the integration points and weights, but the problem of
choosing the order of the integration has been left open. The choice of the order
is clearly a trade-off: a high order integration gives a more accurate result, but
implies an increase of the cost of the integration. On the other hand, a lower
order of numerical integration could lead to a faster integration, but with the
penalty of a reduced accuracy. This reduced accuracy could even turn out to
be very damaging, as it could lead to a higher number of zeros in the stiffness
matrix, making it a singular matrix. A practical way to evaluate the order of
numerical integration can be illustrated in the following example.

Example 2.49. Consider the case in which we have to integrate a function F' to
calculate a the (i,j)th element of a stiffness matrix k; ; = fK Fdx. Assuming
F=f (mQ, Ty, y2) is a polynomial and K,, is a quadrilateral, according to the
model presented so far, we can transform our integral to the reference domain
K, getting k; ; = qu det (Jk,,) F (zk,, (£))d€. In this case, the determinant
of the Jacobian matrix is constant, and therefore it doesn’t increase the degree
of the integrand. This implies that a two-points Gauss rule is sufficient in each
direction to integrate exactly.

As a general rule, given a function F' of degree p in each direction, r+1/2
or p+2/2 evaluations of the integrand F' are sufficient to exactly integrate the
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function (assuming the determinant of the Jacobian matrix is constant) when p
is odd or even respectively.

It should be noted that the Jacobian matrix is not always constant, for
instance it is not when the elements are not rectangles or parallelograms. In
that case higher orders of numerical integrations are needed.

2.8 Generalization of the Finite Element concepts

In engineering, many possible problems arise when treating PDEs, and the
situations reported so far are only the most common. A more general framework
can be proposed: we seek an unknown function u (z) that satisfies a system of
PDESs, which can be wrote with

Au) =[A; (w), 45 (w),..]" =0,
with the boundary conditions
B(u)=[B; (u),B;(u),..]" =o0.

The sought approximated function is

n
U U, = E N;a; = Na.
i=1

FEM works on the weak form however, so what we have to find is the integral

form
// G, (uh)dz—k;]g g;(up)dz=0,Vj=1,....n,
Q o0

where G ; and g, are functions with the usual structure. It is then possible to
write the integrals as a summation over the elements

//Q Gj (up) dz + 5129 g, (up) dz =
g_i‘l (//Kn G (up)dz + yggm g; (un) dz).

Two approaches are available: the method of weighted residuals and the method
of the wvariational functionals for which stationery is sought. A good reference
for both is [34].

2.8.1 Method of weighted residuals

The method of the weighted residuals is a procedure similar to that explained in
1.4.1, where the weighting functions ¢, € V. To obtain an approximate solution
we have to chose an approximation of this space V}, C V and of the space of the
trial solutions U, C U. The choice of the space V}, leads to different methods
with different error properties. When V;, = U}, the method is called Galerkin
method; when ¢, = §;, where 9; () = 0 for x # x;, the method is called point
collocation and when ¢; = I in Q; and zero elsewhere, the method is named
subdomain collocation.
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2.9 Error estimates and convergence rate

An interesting subject to talk about is the error committed when approximating
u with u,. We define the error of the approximation u, as e, = u — u,. The
first important thing to note is what’s stated in the following lemma.

Lemma 2.50. Let u € V be the exact solution of the continuous problem (2.1)
and let u, € V,, be the solution of the discrete problem (2.8). Then, the error
en satisfies the equation

a(u—up,v) =0, Vv €eV,.

If the bilinear form is symmetric, the energetic inner product can be intro-
duced as (u,v), = a(u,v). According to Lemma 2.50 then we get

(en,v), =0, Vv € V,.

This equation means that the error of the approximation we achieved e, is
orthogonal® to every functions of the Galerkin subspace V;, (we say e, is or-
thogonal to the subspace V;,). It can be seen as well that wu,, is the orthogonal
projection? of the exact solution u € V' to the Galerkin subspace V,,. As a con-
sequence, u,, is actually the nearest element in V,, to the exact solution v € V'
in the energy norm (see A.20). This can be translated to

o= unll, = inf flu=ol, .

With these elements in hand, it is possible to formulate the Céa’s lemma,
which is interesting to prove:

Lemma 2.51. Let V be an Hilbert space, a (-,-) : VXV — R a bilinear bounded
V-elliptic form, 1 € V', u € V be the solution to problem (2.1), V,, a subspace
of V. and u, € V,, the solution of the discrete problem (2.3) (Galerkin problem,).
Let C, and Cy be the continuity and V-ellipticity constants of the bilinear form
a(-,-) (see A.19). Then it is true that

a .

C
= wally < Z* inf =y

Proof. We start the proof by considering that the bilinear form a (v — t,, 4 — uy,)
can be written as the sum of a (u — up,u — v) and a (u — uy,, v — uy, ), since we
can exploit the linearity on the second argument getting

a(u—tp,u—0)+a(t—unv—u,) = a(t—Utp,u—v+0—1u,)
= a(u—up,u—1uy).
We can state that v — u, € V,,, as both v and w,, are in V,, (V,, is a linear

space and v — u,, is a linear combination which must therefore be in V,;). Thus,
a(u— up,v —uy,) =0 as a consequence of Lemma 2.50, and we get

a(u—tUp,u—0)=a(t—Up,u—1Uup).

3Two functions f and g are said to be orthogonal if the inner product (f,g) = 0 whenever

f#g.

4If P is an orthogonal projection, it projects v € V onto Pv orthogonally then
(v— Pv,u), =0, Yu € imgP.
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By the V-ellipticity property we have that
a(u—tp,u—up) = Cy|ju— un||‘2/ ,
and by the boundedness of the bilinear form we have that
a(u—tun,u—1up) < Cq|lu—uply |lu—2],, YveV,.
Putting the last two equations together we get

C
lu —unlly, < = lu — vy, Yv € V.

a

O

The importance of the Céa’s lemma lies in the fact that it shows the error e,
is independent on the basis chosen. The only thing that matters is the Galerkin
subspace chosen. Anyway, one has to be careful when choosing a basis of the
subspace as, even if not affecting the error, it affects the performance of the
algorithm by conditioning the stiffness matrix.

From what has been said, it is clear that as long as the mesh elements become
smaller and smaller, the approximated solution gets nearer and nearer to the
exact. In fact, as n — 400, h(n) — 0, which indicates the size of the elements
decreases. In the limit, where h = 0, the exact solution is determined. However,
it is possible to obtain the exact solution after a finite number of subdivisions
of the mesh. If the polynomials used in the elements can exactly fit the exact
solution, it is possible to get u,, = u after a finite number of subdivision of the
mesh, i.e. when h # 0. Thus, for instance, if the exact solution is of the form
of a quadratic polynomial and the shape functions include all the polynomials
of that order, the approximation will yield the exact result. Following this fact,
we can use the Taylor theorem (see Section B.4) to express the exact solution
as a polynomial in the vicinity of a point xg

u@) = wlan) + (G (@) @ = a0)+ (G2 (o)) (5= )+

This way, with an element of size h and degree p, a polynomial expansion of
degree p can be locally fitted exactly. Since x — x is of the order of magnitude
of h, the error will be of the order O (hp+1).

2.10 Adaptive finite element refinement

In Section 2.9 we developed some estimates of the error committed in the ap-
proximation of the exact solution. What we need to discuss, is how to reduce
this error and how to know the way to reduce it under a specified threshold.
We call the process of looking for a solution of lower error refinement. When
the refinement we're trying to perform is based on the results of previous com-
putations, this refinement is called adaptive.

As stated in the section 2.1, the Galerkin method converges when considering
subspaces for which (2.2) holds. Hence, assuming we have a space V,, associated
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Figure 2.3: h-refinement of a two-dimensional mesh.

with a mesh M,,, reducing the size of the elements we get a new mesh M,
(see Figures 2.3 and 2.4) on which the space V,,11 satisfies

V,CVpy1 CV.

Iterating refinements and calculating approximated solutions on spaces of higher
dimension, it is possible to get nearer and nearer to the exact solution (see
Figure 2.4). This type of refinement is named h-refinement. Unfortunately, as
the number of nodes increases, the computational load needed to compute the
approximated solution grows exponentially. It is therefore necessary to refine
the mesh cleverly.

Reducing the size of the elements is not the only way to accelerate the
convergence: it is possible as well to increase the order of the polynomial used
in their definition (p-refinement).

It is moreover possible to divide the previous categories in subclasses: three
typical categories of h-refinement are present and two p-refinement strategies
are recognizable. The categories of h-refinement are presented below.

1. The first category of h-refinement is the element subdivision (enrichment).
The refinement in this case is simply implemented subdividing the ele-
ments showing too high errors in smaller elements. This method is not
very efficient as, during the mesh refinement, some new useless nodes can
be created, and the calculation needed to avoid it becomes more involved.

2. Another h-refinement class requires a complete mesh regeneration or remesh-
ing. In this case, the mesh is completely regenerated, starting from the
definition of the domain. This refinement clearly is expensive, particularly
in three-dimensional environments where the mesh requires considerable
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Mh =1 Mh =3
1 2 1 y )
0.5 0.5
> o > 0
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Figure 2.4: h-refinement of a one-dimensional mesh. It can be seen how the
refinement of the mesh produces a more precise result (black curve).

computational load. Anyway, this kind of refinement is considered to be
superior.

3. Another kind of refinement is the r-refinement: this implies only a repo-
sitioning of the nodes already existing.

For what concerns p-refinement, we can recognize two different approaches:
1. uniform increase of the polynomial order on every elements;

2. local increase of the polynomial order typically using hierarchical refine-
ment.

It is furthermore possible to combine the positive aspects of both the refine-
ment types, getting what’s called hp-refinement. In this kind of procedure,
both the degree of the element and its size are refined in order to produce an
approximation nearer to the exact solution.

2.10.1 Prediction of the element size

In practical applications, we commonly try to find an approximation whose
relative energy norm percentage error € is less than a specified €, specifically
defined for each application. The ideal case is the one in which the distribution
of energy norm |el|, (see A.20) is uniform on all elements. Thus, the permissible

error is
PE =éful, = &/|a? + |ellZ,
where
llell — @

e’
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As already stated, we could require that the error is distributed equally on each
element, so that we can require that the error for the k*" element is

~ 112 2
el +lelle _

A ms (2.33)

lellex <€

where M), is the total number of elements in the mesh and e, is the error
energy required for each element. The elements for which Equation (2.33) are
candidates for refinement. This means we can refine those elements only, re-
ducing their size. In this case, the technique of mesh subdivision is employed,
but its efficiency is dependant on the fact that, despite the reasonable number
of degrees of freedom, the number of trial solutions may be excessive.

It can be shown a more efficient way of refining basing on the energy error
is performing a complete remeshing, creating a new mesh which satisfies the
condition of Equation (2.33) for all the elements k in the mesh. We can suppose,
for instance,

lell, oc k2

where hy, is the size of the k' element and p is the order of the polynomial used
in the approximation. This means the new element size should be no larger

than )
ho= (L)
Em

2.10.2 p- and hp-refinement

Nonuniform p-refinement is possible, and it can be done hierarchically. However,
generalizing the process is difficult and many assumptions are needed about the
decrease of the error. More information about this can be found in [31, 34].

hp-refinement is very interesting and recent works have proved it to be an
efficient technique of refining. An efficient methodology has been proposed in
[39, 34]. The first step requires to pursue through h-refinement with lowest-
order elements an accuracy around 5% with uniform energy norm error. After
this, a p-refinement is performed uniformly on the elements. The result is an
efficient procedure with easy implementation.

Relevant in this regard is the HERMES project: Hermes is a free C++ /Python
library for rapid prototyping of adaptive FEM and hp-FEM solvers developed
by an open source community around the Ap-FEM group at the University of
Nevada, Reno. The library has a clean design and modular structure, and it is
available under the GPL license (Version 2, 1991).
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Chapter 3

Bézier, B-spline, NURBS and
T-spline

The mathematical representation of curves, surfaces and solids is fundamental
in a design process. It will be shown in Chapter 4 that these structures will be
used in the analysis as well, making these technologies with their properties key
concepts in a production environment.

3.1 Analytical representation

The most common representation forms of a curve or of a surface are the implicit
and the parametric form.

In the implicit form, the equation is given in a way in which the dependent
variable is not given explicitly in terms of the independent variables. The general
form of an implicit equation is

f(l‘l,ﬂig,...,l‘n,y) =0.

A surface lying on the zy plane is then written

f(z,y)=0.

By contrast, the explicit representation is given so that the dependent variable
is explicitly given as a function of the independent variables:

y=f(21,Ze,...,Tn).

A different way of representing an equation is the parametric form

F(&)=(91(€),92(8),---,9n(§)), c< €< d.

Each coordinate of an element in im (F') is represented separately as an explicit
function of an independent parameter.

Example 3.1. The ellipse in Figure 3.1a can be expressed with the implicit

form ) )
T Yy

< —1 1

3.52 + 22 (3.1)
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Figure 3.1: (a) Ellipse on the xy plane defined using a parametric or an implicit
form. (b) Ellipse on the zy plane defined using an explicit form.

’ ‘ Implicit form ‘ Parametric form ‘

Curve c(z,y)=0 C)=(z(),yn)
Surface | s (z,y,2) =0 | S(§n) = (= (§n),y(En),2(n)

Table 3.1: Comparison between parametric and implicit forms of curves on the
zy plane and surfaces in the xyz space.

or with the parametric form

C () =(x(8),y(§) = (4-cos(§),2sin(g)).
The explicit form, instead, cannot express the entire ellipse as it doesn’t fit the

definition of function. Solving Equation 3.1 by y we get

2 3
y(x) = iﬁ (2% +3.5%)%.

The positive part is plotted in Figure 3.1b.

A widely used scheme for writing surfaces in the xyz space is the tensor
product scheme. This scheme can be expressed through the analytic form

SEm =D fi(©)gi(mbij, a<&<b,

i=0 j=0
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>

NS

NS

=

Figure 3.2: Sphere in the xyz space.

where
bij = (i, Yij: Zij) -
However, it is possible to express a surface again both with the implicit form

fx,y,2) =0,
and with the explicit form
z=f(z,y).
Example 3.2. The sphere in Figure 3.2 can be expressed by the implicit form
2?4+ +22-1=0
or with the parametric form

S (&,m) = (sin& - cosn,sing - siny, cos§) , 0 <& <7, 0 <7 < 2.

3.2 Power basis curves and surfaces

It can be seen from the general form of a parametric curve in Table 3.1 that

the class of curves definable is very large. Anyway, such a general form presents

some difficulties which suggest the need for a restriction in order to be more

practical. A good class of functions to use is the class of the polynomials.
Hence, the general form of a n*P-degree power basis curve is:

C©) = (x(©).y(6),2(6)
= Zaigi
1=0
= (lail_y)" €1,
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with b < & < ¢. The a;’s are the row vectors (2;,y;, z;) and the n + 1 functions
¢ are called basis (or blending) functions.

Polynomials are a good choice as they're efficiently represented and man-
aged by computers and are mathematically simple to handle. Unfortunately
polynomials are not capable of representing many kinds of important curves. In
these cases it is necessary to approximate.

Following the tensor product scheme, it is simple to guess that a power basis
surface can be represented in a similar way:

SE&n) = (@&n),y&mn),z(&mn)

DD aiEy’

i=0 j=0

(7)) a5 17

where

aij = (Tij, Yijs %)
b<{<c

3.3 Bézier curves and surfaces

Bézier curves use polynomials like the power basis representation. This fact
makes the two representations equivalent, where by equivalent it means any
curve representable with the power basis form is representable even with the
Bézier form. However, the power basis representation shows three disadvan-
tages:

e the coefficients a; convey almost no geometrical meaning to the user;

e algorithms for processing power basis curves have a more algebraic con-
notation rather than geometrical;

e more prone to round-off error.

Bézier curves improve the power basis representation relieving these problems.
An n't-degree Bézier curve is defined by

C() =) Br()Pi, a<{<h.
1=0

The functions ' »
nl-&(1-&""

il (n—1)!

are the basis functions (n'"-degree Bernstein polynomial), similarly to the terms
&' of the power basis representation, and the P;’s are called control points.

B (€) =

Example 3.3. The Bézier curve in two dimensions given in the figure 3.3a,
for instance, can be plotted using the Bernstein polynomials represented in the
figure 3.3b, using the control points

Py=(0,0), P, =(1,1), Py =(2,0.5),
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Figure 3.3: Example of (a) Bézier curve on the xy plane with (b) its Bernstein
polynomials.

P3; = (3,0.5), Py=(0.5,1.5), P5=(1.5,0).
If, instead, the control points are given in a three-dimensional space
Py, =(0,0,0), P, =(1,1,1), P, =(2,0.5,0),
P3 = (3,0.5,0), P, =(0.5,1.5,0), P5=(1.5,0,1),
then a three-dimensional Bézier curve is generated (see Figure 3.4).

A nonrational Bézier surface is obtained by using the expression

n

SEn =3 B OB WPy { (Z55)

i=0 j=0

The control points P; ; form a bidirectional net like the one illustrated in the
example Figure 3.5.

3.3.1 Rational Bézier curves and surfaces

There is a considerable amount of important shapes which cannot be represented
with polynomials only. Curves or surfaces such as circles, cones, ellipses, spheres,
etc..., for instance, can be represented with rational functions, which are ratios
of polynomials:

(3.2)
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Figure 3.4: Example of (a) Bézier curve in the xyz space with (b) its Bernstein
polynomials.

Figure 3.5: Example of a Bézier surface in the zyz space define by its control
points.
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where the w;’s are scalars called weights. It is possible to rewrite the definition
(3.2) using the notation

C()=> R &P, a<{<h,
=0

where
B (f ) W;

> Bl (&) w;
i=0

are called rational basis functions.

It is possible to change again the representation of the rational Bézier curves
using a new interpretation which yields efficient processing and storage. The
usage of homogeneous coordinates permits to represent a rational curve in an
n-dimensional space as a curve in n 4+ 1 dimensions. If P = (x,y, z) is a point
in a 3-dimensional space, it can be represented as P" = (wx,wy,wz,w) in a
4-dimensional space. A function H is defined as a mapping of a point
(5 a) w#0

P_H(Pw)_H((xvyasz))_{ (m,y,z) w=20

to the hyperplane w = 1. Employing this concept, a new definition of a rational
Bézier curve in a 3-dimensional space can be the nonrational Bézier curve

C” () =Y BrEPY
1=0

defined in a 4-dimensional space. Applying the transformation H to C" (§) we
get the nonrational Bézier curve as the projection of the rational curve on the
plane w = 1.

Example 3.4. Consider we want to represent the 2-dimensional rational Bézier
curve with the control points

PO:(LO)aPl:(171)7P2:(031)7

and with the weights
’U}O:]., wlzl, 11)2:2.

It is possible to write the curve

or using the rational basis functions:
B (§) wi

C &) =Y RO P R (©) = -
i=0 > B @) w;
i=0
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Figure 3.6: Example of mapping of a nonrational Bézier curve (black curve in
figure) to a rational Bézier curve (red curve in figure).

In both cases the representation is the one of the black curve of the figure
3.6. It is possible, as stated above, to use a better notation, moving to a
higher dimension. The control points P; = (z;,y;) needs to be redefined to
P = (w;x;, w;y;, w;). This way, the new curve can be represented in the
3-dimensional space like the red curve in the figure 3.6.

A rational Bézier surface can be written

S (&) = =4 R
SN BB ) wi,
i=0 j=0

or using a nonrational expression

SU(&m) =) Bl (&) B} () Py, { §§§Z

i=0 j=0
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3.4 Univariate and multivariate B-splines

Both Bézier and power basis curves are affected by some shortcomings:
e a high degree polynomial is needed to satisfy many constraints;
e a high degree is required to approximate some shapes;
e local control of the curve is difficult.

A solution to these points is to employ piecewise-polynomials or piecewise-
rational polynomials. The idea is to construct the curves dividing the domain
and associating each part of the domain with a distinct polynomial. Points
separating different parts of the domain are called breakpoints. Each segment
of the B-spline curve connects to another on the breakpoint with some level of
continuity: a curve C (£) is said to be C* continuous at the breakpoint &; if
P (&) =C (&), Vo< <k

A good choice of B-spline basis functions is that discussed in the subsection
3.4.1.

3.4.1 B-spline basis functions

Given is a set 2 = [£,,&1,...,&m] where & € R, ¢ = 0,...,m and & < &1,
i=0,...,m— 1. The &’s are called knots and Z is called knot vector. The i*®
B-spline basis function of degree p (and order p + 1) is

)

No(f){ L, & <E<&n

0, otherwise
N = p e N O N . (33)

Definition 3.5. A knot vector of the form

E= a/7"'aa7€p+17"'a§mfpfl7ba"'7b
~—— ~——

p+1 p+1

where p is the degree and m is the number of elements of the knot vector, is
said to be nonperiodic or clamped or open.

Example 3.6. In Figure 3.7 B-spline basis functions over the knot vector = =
[0,...,0,1,4,6,8,...,8] of increasing degree are represented.

Propertyl: This choice of the basis functions guarantees the local support prop-
erty: NP (§) = 01if & ¢ [&, &i1pr1). This fact can be simply seen in Figure

3.7.
Property2: In any given knot span [£;,&;4+1) at most p + 1 of the N? are
nonzero, namely the functions N} ..., N?.

Property3: The property of nonnegtivity states that N’ (£) > 0 for all 4, p
and &.
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Figure 3.7: Example of B-spline basis functions over the knot vector = =
{0,...,0,1,4,6,8, ...,8} of increasing degree.
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Property4: The property of partition of unity states that for any arbitrary
knot span [§, §iv1), 225, NJ (§) =1 for all € € [&, &iv1)-

Property5: N7 (§) is C°° ((§;,&j+1)) for all j. At a knot N? (§) is p — k times
continuously differentiable, where & is the multiplicity of the knot.

Property6: The set of all B-spline basis functions of p‘i-degree NY (£), i =

0,...,n defined on the knot vector
== 507"'7507513"'agla"'agka"'afk
—_— —— ——
So 51 Sk

forms a basis of the space SE of the of the piecewise-polynomials of degree
p with continuity C"7 at §; “with rj = p— 8;. It is possible to show that
the dimension of the space SE is

k
dim (S2) =k (p+1) =Y _ (rj +1). (3.4)
=0

3.4.2 Algorithms for B-spline basis functions

A frequent need when working with B-spline basis functions is to compute all
the nonvanishing functions in a specific point . Basing on the equations (3.3),
suppose we want to compute all the nonvanishing functions in & € [¢;,&;11)
when p = 2, we get:

N7J272 €)= %]\/?72 (&) + ﬁ]\g 1 (8,
(%)
2 &= &1 Civa — & 1
N (©) = Eiv1 — &im 1NZ 1 (6 + Eiva — fyiv/(g)
(%) (%)
20y S§—& 1 §ivz =& 1
Ni©) = Siv2 — &‘ivf/(g) - Si+s — Sit1 Nia (©)-

()
The asterisks underline the presence, in different basis functions, of the same
functions. It is possible, therefore, to reuse the same value, instead of calculating
it more than once. Algorithm 3.2 considers this improvement and computes all
the functions which are not zero in the provided point £&. As a conceptual
scheme, what we have to compute is the inverted triangular table

1 14
Ni_q Nipi1
NI L

K2

NO

(2
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Algorithm 3.1 Algorithm for the determination of the knot span in which the
provided value lies.

% findSpan finds in which knot span a specific

% value of zi is to be found.

% Input:

% n: maz index of the control points (n+1 control points);
% p: degree of the B-spline basis functions;

% zi: scalar value to be found;

% Xi: open knot wvector {zi_ O0,...,zi n,...,z {nfp+1}}.

% Output :

%

i: knot span [zi_i, xi_{i+1}) in which u lies.
function i = findSpan(n, p, xi, Xi)
% Special case.

if xi = Xi(n+2), i = n; return; end;
% Binary search.
low = p;
high = n+1;
i = floor ((low + high)./2);
while xi < Xi(i+1) || xi >= Xi(i+2)
if xi < Xi(i+1); high = i;
else low = i; end;
i = floor ((low + high)./2);
end

Algorithm 3.2 Algorithm for the evaluation of every nonvanishing B-spline
basis function in the provided value.

% Compute the mnonvanishing basis functions.

% Input:

% i: index of the basis function to compute (this wvalue cannot be
smaller

% than p);

% zi: value in which the basts function is being evaluated;

% p: degree of the basis function;

N

% Xi: knot vector owver which the basis function is being built.
% Owutput:
% N: wvector containing the value of all the nonvanishing basis

functions :
% N(1)=N_{i—p} ... ,N(p+1)=N_{i }.
function N = basisFuns(i, xi, p, Xi)
% Preallocation .
N = zeros (1, p+1);
left = zeros (1, p+1);
right = zeros (1, p+1);
% Computation of the inverse triangular table starting from degree 0.
N(1) = 1;
for j = 1:p
left (j+1) = xi—Xi(i+1—j+1);
right (j+1) = Xi(it+j+1)—xi;
saved = 0;
for r = 0:j—1
temp = N(r+1)./(right (r+1+1)+left (j—r+1));
N(r+1) = saved+tright (r+1+1).xtemp;
saved = left (j—r+1).xtemp;
end
N(j+1) = saved;
end
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Algorithm 3.3 Algorithm for the computation of the i*" B-spline basis function
in £.

% FEvaluates the wvalue of the i—th B-spline basis function of degree p owverl
% the knot wector Xi in xi. 2
% Input: 3
% p: degree of the function to evaluate; 4
% m: number of knots — 1; 5
% Xi: knot wvector over which the bastis function is built; 6
% i: index of the B—spline basis function to compute; 7
% zi: point where to evaluate the B—spline basis function. 8
% Output: 9
% Nip: wvalue of the B—spline basis function in zi. 10
function Nip = basisFun(p, m, Xi, i, xi) 11
% Check to see if we’re evaluating the first or the last basis function atl2
% the beginmning or at the end of the knot wvector. 13
if (i = 0 && xi = Xi(0+1)) || (i = mp-1 && xi = Xi(m+1)) 14
Nip = 1; return; 15
end 16
% When zi is out of the domain it is set to zero. 17
if (xi < Xi(i+1) || xi >= Xi(i+p+1+1)) 18
Nip = 0; return; 19
end 20
% Preallocation and computation of the temparary values of the functions t&l
% be used according to the triangular table. 22
N = zeros(p+1); 23
for j = 0:p 24
if xi(1l) >= Xi(i+j+1) && xi(l) < Xi(i+j+1+1), N(j+1) = 1; 25
else N(j+1) = 0; end; 26

end 27
% Computation of the rest of the triangular table. 28
for k = 1:p 29
if N(1) == 0, saved = 0; 30
else saved = ((xi(1)—Xi(i+1)).*N(0+1))./(Xi(i+k+1)—Xi(i+1)); end; 31

for j = 0:p—k}l1-1 32
Xileft = Xi(i+j+1+1); 33

Xiright = Xi(i+j+k+1+1); 34

if N(j+1+1) = 0 35

N(j+1) = saved; 36

saved = 0; 37

else 38

temp = N(j+1+1)./(Xiright—Xileft); 39

N(j+1) = saved+(Xiright—xi(1l)).*temp; 40

saved = (xi(l)—Xileft).xtemp; 41

end 42

end 43
end 44
Nip = N(1); 45

In case we only want to compute a single B-spline basis function, we can
try to produce an algorithm considering which basis functions are needed and
which are not. We can come up with this triangular table:

NO

0 1

Ni+1 Ni Né”fl

N;* NP, (3.6)
N? N} s

+p—1 i+p—1
0

Ni+p

These are the only functions needed when computing N7, and the procedure in
Algorithm 3.3 computes this table, beginning from the degree O.
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Figure 3.8: Example of derivatives of the basis functions of Example 3.6 with
p=3.

3.4.3 Algorithms for B-spline basis functions derivatives

The derivative of a B-spline basis function N7 (§) can be computed with

ON; _
23 Sivp —&i
Example 3.7. Using the recursive definition (3.7) on the B-spline basis func-
tions of degree p = 3 of Example 3.6 it is possible to obtain the curves of Figure
3.8.

I
Sitpr1 — &it1

NI (). (3.7)

Example 3.8. Using the recursive definition (3.7) on the B-spline basis func-
tions of degree p = 3 built over the knot vector

==140,0,0,0,2,4,4,6,6,6,8,8,8,8}

it is possible to obtain the curves of Figure 3.9. These curves shows the be-
haviour in case of single, double and triple knots.

The derivatives of the B-spline basis functions are important as they lead to
another important property:

Property7 In the interior of a knot span, all the derivatives of N? (£) exist (as
it is a polynomial); at a knot it is p — k times continuously differentiable,
where k is the multiplicity of the knot. This means that increasing the
degree increases the continuity whereas increasing the knot multiplicity
decreases the continuity.

Two efficient algorithms for the determination of the derivatives of B-spline basis
functions are given: Algorithm 3.4 computes the derivatives of order 0 < k < n
of all the nonvanishing functions in the given value; Algorithm 3.6 determines
the derivatives of order 0 < k < n of the i*® function.

University of Padua Faculty of Engineering




CHAPTER 3. BEZIER, B-SPLINE, NURBS AND T-SPLINE
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Figure 3.9: Example of derivatives of the B-spline basis functions of degree p = 3

built over the knot vector = = {0,0,0,0,2,4,4,6,6,6,8,8,8,8}.

Algorithm 3.4 Algorithm for the determination of the derivatives of order
0 < k < n of all the nonvanishing B-spline basis functions in the specified £

(continues to Algorithm 3.5).

derivsBasisFuns computes the nonzero basis functions and
their derivatives.
Input:
i: index of the basis function to compute (i1=0,1,...,n).
zi: point where the derivatives are evaluated;
p: degree of the basis functions;
n: defined accordingly to the knot wvector;
Xi: knot wector.
Output :
ders: bidimensional matriz where the element in position
(k,j) is the (k—1)—th derivative of the function
N {i—p+j,p} with 0<=k<=n and 0<=j<=p.
function ders = derivsBasisFuns(i, xi, p, n, Xi)
% First evaluate the basis functions.
ndu(l, 1) = 1;
left (p+1) = 0;
right (p+1) = 0;
for j=1:p
left (j+1) = xi—-Xi(i+1-j+1);
right (j+1) = Xi(i+j+1)=xi;
saved = 0;
for r=0:j-—1
ndu(j+1, r+1) = right (r+2)+left (j—r+4+1);
temp = ndu(r+1, j)./ndu(j+1, r+1);
ndu(r+1, j+1) = saved+tright (r+2).xtemp;
saved = left (j—r+1).*temp;
end
ndu(j+1, j+1) = saved;
end
% Load the basis functions.
ders (n+1, p+1) = 0;
for j=1:p+1
ders(1, j) — ndu(j, pt1);
end
% (continues...)

RN RNNA XX RREKR KK

University of Padua Faculty of Engineering

© 00U W



86

CHAPTER 3. BEZIER, B-SPLINE, NURBS AND T-SPLINE

Algorithm 3.5 Algorithm for the determination of the derivatives of order
0 < k < n of the i*" B-spline basis function in the specified ¢ (continues from
Algorithm 3.4).

% (...continues)

% Evaluation of the derivatives.

% Loop owver function indezx.

a(p, p) = 0;

for r=0:p
% Indices for the matriz containing the derivatives.
sl = 0; s2 = 1;

a(l, 1) = 1;
% Loop for the computation of the kth derivative.
for k=1:n
d = 0;
rk = r—k; pk = p—k;
if r >= k
a(s2+1, 0+1) = a(sl+1, 0+1)./ndu(pk+2, rk+1);
d = a(s2+1, 0+1).xndu(rk+1, pk+1);
end
if rk >= —1, j1 = 1;
else jl1 = —rk; end;
if r—1 <= pk, j2 = k-—1;
else j2 = p—r; end;
for j=jl:j2
a(s2+1,j+1) =...
(a(s1+1, j+1)—a(sl+1, j—1+1))./ndu(pk+1+1, rk+2);
d = d+a(s2+1, j+1).xndu(rk+j+1, pk+1);
end
if r <= pk
a(s2+1, k4+1) = —a(sl+1, k)./ndu(pk+2, r+1);
d = dta(s2+1, k+1).xndu(r+1, pk+1);
end
ders (k+1, r+1) = d;
j=sl; sl = s2; s2 = j;
end
end
% Multiply by the correct factors.
r = p;
for k=1:n
for j=0:p
ders (k+1, j+1) = ders(k+1, j+1).%r;
end

r = r.x(p—k);

end
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NY (§) N (€ [N,
Siv1 —&i N (§) [N, (9
Civ1—&—1 | &Gira—& | NZ(§)

Table 3.2: Scheme of structure ndu(i,j) used in Algorithm 3.4 to store the
elements necessary for the computation.

Algorithm 3.4 is based on a generalization of Equation (3.7):

| k
N = G gy ke ©,
2

where
ap,0 = 1,
_ ak—1,0
ko= —"1,
Sitp—k+1 — &
akp—1,5 — Ak—1,j5-1 .
ar; = ,i=1,...,k—1,
Sitpti—k+1 — &itj
—Ak—1,k—1

Qg = —————.
Eitpr1 — Civk

By analyzing this equation, it is simple to see that we need the inverted trian-

gular table, the differences of knots and the differences of the ay ;’s. A possible

structure to maintain these data is a table like Table 3.2. In Table 3.2 the

necessary data to compute the aj ;’s and then the Nf’(k)’s is present.
Algorithm 3.6 is based, instead, on the Equation

A (I P (€)>

Sivp —&i Sitp+1 — &it1

which can be derived by repeated differentiation of Equation (3.7). By using
Equation (3.8), for instance, for p =3 and k = 0,...,n, with n = 3 we get:

NS’(I) (é—) =3 ( N22 (5) N7;2+1 ) 7

Civs—&  Eiva—Ei

2,(1 2,(1)
NP (e) =3 (Ni D © Nit >

! Civs —&  Eiva—Ein

N-S’(?’) (f) -3 <N22,(2) (5) Ni2+7(12) ) -

' Sivs =& Cita — &
Now, we can use some tables to compute all and only the values needed to get

all the derivatives up to degree 3 of the basis functions. The first computes the
ith basis function of degree 3 (the triangular table of (3.6)):

N? 1

NO ‘N2
i+ NS
NO Nz
2 it1
NS 142

i+3
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Then, the k' derivative, 0 < k < n, can be computed with a table of this kind:

p—k
N; N2,(k—1)
i N3,(k)
NG T
NP i+1
i+k

3.4.4 Univariate B-splines

The general concept of the B-spline curves is to maintain the same structure
used to define the Bézier curves or the power basis curves, designing the basis
functions according to the idea exposed above:

CE=> fi(§Pia<&<h.
1=0

As already stated, a good choice for the f; (£)’s are the basis functions defined
in Subsection 3.4.1; this leads to the form

n

CE) =) N (P a<&<h,
i=0
where the P;’s are the control points, and the N? (£)’s are the ptP-degree B-
spline basis functions of the equation (3.3) defined on the nonuniform knot
vector

E=la,...0,+1,---,&, 0,0, B =n+p+2. (3.9)
~—— ——
p+1 p+1

The space of the B-splines of degree p built over the knot vector Z is denoted
by
S (E,p) = span {N} ()}, -
Notation 3.9. S (Z,p) will be written with the alternative notation SZ in case
a shorter form is preferable.

Example 3.10. Reconsidering the example 3.3, it is possible to use the same
control points to build a B-spline curve. It is necessary to define a knot vector
in this case, = = {0,0,0,0.25,0.5,0.75,1,1,1} for instance. The curves in the
2-dimensional and the 3-dimensional space are represented in Figures 3.10 and
3.11.

The properties of the B-spline curves are listed below.
Propertyl: If n=pand == {a,...,a,b,...,b} then C (&) is a Bézier curve.
Property2: Endpoint interpolation: C (a) = Py and C (b) = P,,.
Property3: Variation diminishing property: no plane has more intersections

with the curve than with the control polygon.
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Algorithm 3.6 Algorithm for the determination of the derivatives of order
0 < k < n of the i*" B-spline basis function in the specified £.

% derivsBasisFun determines the derivatives of the i—th B—spline basis
% function of degree p built over the knot wvector Xi in the point zi of
% degree up to degree mn.
% Input:
p: degree of the function;
Xi: knot wector;
i: index of the B—spline basis function to differentiate;
zi: point in which to evaliate the derivative;
n: mazr degree of derivative to find;
Output :
derivs: derivs (k) contains the k—th—1 derivative of the function in zi
function derivs = derivsBasisFun(p, Xi, i, xi, n)
% Check if zi is outside the domain.
derivs = zeros(n-+1);
if xi < Xi(i+1) || xi >= Xi(i+p+1+1)
for k = 0:n, derivs(k+1) = 0; end;
return;
end
for j = 0:p
if xi >= Xi(i+j+1) && xi < Xi(i+j+2), N(j+1, 1) = 1;
else N(j+1, 1) = 0; end;
end
% Compute the triangle.
for k = 1:p
if N(0+1, k—1+1) = 0, saved = 0;
else saved = ((xi—Xi(i+1)).*xN(0+1, k—1+1))./(Xi(i+k+1)—Xi(i+1)); end;
for j = 0:p—k+1-1
Xileft = Xi(i+j+1+1);
Xiright = Xi(i+j+k+1+41);
if N(j+1+1, k—141) = 0
N(j+1, k+1) = saved;
saved = 0;
else
temp = N(j+1+1, k—1+1)./(Xiright—Xileft );
N(j+1, k+1) = saved+(Xiright —xi).*temp;
saved = (xi—Xileft).xtemp;
end
end
end
for k = 1:n
for j = 0:k, ND(j+1) = N(j+1, p~k+1); end;
for jj = 1:k
if ND(1) == 0, saved = 0;
else saved = ND(0+1)./(Xi(i+p—k+jj+1)—Xi(i+1)); end;
for j = 0:k—jj
Xileft = Xi(i+j+2);
Xiright — Xi(itj+ptjj+1);
if ND(j+1+1) = 0
ND(j+1) = (p—k+jj).*saved;
saved = 0;
else
temp = ND(j+2)./(Xiright—Xileft);
ND(j+1) = (p—ktjj).*(saved—temp);
saved = temp;
end
end
end
derivs (k+1) = ND(1);
end

NN KKK
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0.8
0.6
0.4r

0.2

Figure 3.10: Example of B-spline curve in the 2-dimensional space built
using the control points of the example 3.3 and the knot vector = =
{0,0,0,0.25,0.5,0.75,1,1,1}. Below the B-spline basis functions used are re-
ported.

Figure 3.11: Example of B-spline curve in the 3-dimensional space built
using the control points of the example 3.3 and the knot vector = =
{0,0,0,0.25,0.5,0.75,1,1,1}. Below the B-spline basis functions used are re-
ported.
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Algorithm 3.7 Algorithm to compute the value in the physical space of a curve
given its value in the parametric space.

% bsplineCurvePoint determines the wvalue of the B-spline curve in the
% point zi of the parametric space.

% Input

% n: scalar that indicates that n+1 is the number of control points;
% p: degree of the cure;

% Xi: knot wector;

% P: control points where P(i, j) indicates the j—th coordinate of the
% i—th control point.

% zi: point of the parametric space where to evalute the curve.

% Output:

% C: (zi, eta) is the value of the curve in the two directions.

function C = bsplineCurvePoint(n, p, Xi, P, xi)

% Find the span in which zi lies.

span = findSpan(n, p, xi, Xi);

% Determine all the monwvanishing B—spline basis functions in xi.
N = basisFuns (span, xi, p, Xi);

% Calculation of the value of the curve.

C(2) = 0;
for i = 0:p
C(1) = C(1)+N(i+1).#*P(span—p+i+1, 1);
C(2) = C(2)+N(i+1).#*P(span—p+i+1, 2);
end

3.4.5 Algorithm for B-spline curves

Algorithm 3.7 computes the value in the physical space! of a curve in a specific
point in the parametric space?.

3.4.6 Algorithm for B-spline curves derivatives

Algorithm 3.8 is an efficient algorithm for evaluating the derivative of a B-spline
curve. The base for the algorithm is the equation

I"C(§) _ -~ "NF(©)

TN N T Y, (3.10)
aEk Z::O ¢

which is a simple application of the linearity of the derivative. Algorithm 3.8
computes all the derivatives of degree 0 < k < d in the vector CK(k) and takes
advantage of the algorithm presented previously.

3.4.7 Multivariate tensor-product B-splines

We can use the tensor product to obtain B-splines in higher dimension spaces:
assume d is the dimension of the B-spline we’re trying to build (for d = 2 we get
B-spline surfaces, for d = 3 we get B-spline solids). We need to define d knot
vectors denoted with

Za = aou"'uaomgpoﬂ*l,av‘"7£na,a7ba7"'7ba ) |\:a‘:na +pa+27
—_——

Patl p+1

1The physical space will be defined more precisely in 3.4.10.
2The parametric space will be defined more precisely in 3.4.10.
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Algorithm 3.8 Algorithm for the evaluation of the derivative of a B-spline
curve.

% bsplineCurveDerivs computes the derivatives of a B-spline curve 1
% up to and including dth derivatives for the curve provided. 2
% Input: 3
% n: defined so that n+1 is the number of control points; 4
% p: degree of the B—spline basis function to wuse; 5
% Xi: knot wvector in direction zi; 6
% P: bidimensional matriz containing the coordinates of the 7
% control points on the rows: the kth coordinate of the 8
% ith control point is P(i, k); 9
% zi: point where to evaluate the derivative of the curve; 10
% d: order of the derivative up to which we want to calculate them. 11
% Output : 12
% CK: bidimensional mariz containing the derivative: CK(k, 1) 13
% is the ith coordinate of the kth derivative where 0<=k<=d. 14
function CK = bsplineCurveDerivs(n, p, Xi, P, xi, d) 15
dxi = min([d, p]); 16
CK = zeros(d+1, 3); 17
% If p < d, higher order derivatives are set to zero. 18
for k = p+1:d, CK(k+1) = 0; end; 19
span = findSpan(n, p, xi, Xi); 20
nderivs = derivsBasisFuns (span, xi, p, dxi, Xi); 21
for k = 0:dxi 22
CK(k+1, length(P(1,:))) = 0; 23
for j = 0:p 24
CK(k+1, :) = CK(k+1, :)+nderivs(k+1, j+1).*P(span—p+j+1, :); 25
end 26
end 27
with a = 0,...,d—1. The tensor product B-spline basis functions can be written

as
Po,--Pd A ATPO Pd—1
NPorba & NPO@ @ N

205--+5%d 1d—1 °
The properties of the tensor-product B-spline basis functions for d = 2 are

listed below.

Propertyl: This choice of the basis functions guarantees the local support prop-
erty: NP (§) NI (n) =0if (§,m) & [§is Sitpr1) X 0j5 Mjq+1)-

Property2: In any given rectangle [{;,, &ig+1) X [1jo, Tjo+1) at most (p + 1) (g + 1)
of the N/ (§) N (1) are nonzero, namely the functions Ny () Nif (n), for
iop —p <1i<ipand jo—¢q<j< jo.

Property3: The property of nonnegativity states that N} (§) N (n) > 0 for
all 4, j, p, ¢, § and .

Property4: The property of partition of unity states that 3 >>7 o N/ (§) N (n) =
1 for all (¢,n) € [ag, bo] % [a1,b1].

Property5: N/ (&) N (1) is O™ ((&iy, &ig+1) X (MjosMjo+1)) for all i, 4, o and
Jo. At a & (n) knot it is p — k (¢ — k) times differentiable in the & (n)
direction, where k is the multiplicity of the knot.

Property6: The set of all bivariate tensor-product B-spline basis functions of
p'h-degree in the ¢ direction and of ¢*"-degree in the 1) direction N7 (£) N (),

1=0,...,nand j =0,...,m defined on the knot vectors
== 507"'75075%"'7§1a"'7§k7"'7£k
—— — ——

S{,D 8511 Sé,k
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H= oy - 505 My e v sy e e s My e o251
—_— —— N——
Sn,0 Sn,1 Sn,l
forms a basis of the space Sé’jq of the of the piecewise-polynomials of degree
p in the & direction and degree q in the n direction, with continuity C"¢3 in
direction & at & with r¢ j = p— 8¢ ; and with continuity C" in direction
n at n; with r, ; = ¢ — s, ;. It is possible to show that the dimension of
the space SZ'%; is

k l
dim (S2%) = [k + 1D =D (e + D) | [1a+1) =Y (s +1)
j=0 7=0
(3.11)

The tensor product B-spline space is

= = 4 d—1 g (=
S(‘—‘07'-'a‘—‘d—lapOa"'apd—l) - ®a:08(‘—‘04ap04)
1seesMd—1
. Pos---sPd—1
span {Nzo s } _ .
e ’LOZO,...,Zd,l:O

Notation 3.11. S (Zo,...,Z4-1,D0, - - -, Pd—1) Will be written with the alternative

notation Sp o ’%; ' in case a shorter form is preferable.
B

Partlcularly important multivariate B-splines are the B-spline surfaces

=D D NP(ENI () Pij, a<€&<b. (3.12)

i=0 j=0

Example 3.12. B-spline surfaces are built using bivariate tensor-product B-
spline basis functions. An example built over the knot vectors = = H =
{0,0,0,0.5,1,1,1} with p = ¢ = 2 can be seen in Figure 3.12.

The P; ;’s form a net of control points and basis functions are defined over
the knot vectors

E= a7'"7aa£p+17"'7£nuba~'~ab ’ ‘E|:n+p+27
—— ——

p+1 p+1

H=|c,....c;0q41,sNm,dy...,d| , |[Hl=m+qg+2.
—— ——

g+1 q+1

Some important properties of the B-spline surfaces are listed below.

Propertyl: If n=p, m=¢q, E=[a,...,a,b,...,b and H = [a,...,a,b,...,}]
then S (£,7) is a Bézier surface.

Property2: Endpoint interpolation: the surface interpolates the four corner
control points S (a1,a2) = Pog, S (b1,a2) = Py, S (a1,b2) = Pom and
S (b1,b2) = Py .
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Figure 3.13: Example of B-spline surface built using the same control points

—_

of Figure 3.5, p = ¢ = 1 and the knot vectors Z = {0,0,0.5,1,1} and H =
{0,0,0.3,0.6,1,1}.
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Figure 3.14: Example of B-spline surface built using the same control points
of Figure 3.5, p = 1, ¢ = 2 and the knot vectors = = {0,0,0.5,1,1} and
H ={0,0,0,0.5,1,1,1}.
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Example 3.13. Reconsidering the image of Figure 3.5, an example of B-spline
surface built using the same control points is shown in Figures 3.13 and 3.14. In
the first case, both the degrees p and g are chosen so that the surface interpolates
exactly the control points. This is done choosing p = ¢ = 1 with the knot vectors
= =1{0,0,0.5,1,1} and H = {0,0,0.3,0.6,1,1}. In Figure 3.14 ¢ = 2, so only
the other direction exactly interpolates the control points.

Using the tensor product, a solid can be expressed using three sets of basis
functions

n m

S(&n,¢) = ZZZNP MNE Q) Piji, a<€<b,

i=0 j=0 k=0

where the P; ; x’s are the control points forming the control net, the N!’s, the
N j‘?’a and the N/’s are the B-spline basis functions defined over the knot vectors

2= al,"'aala€p+1a"'£n7b17"'ab1 7|E‘:n+p+2a
——— ——
p+1 p+1 |

H= a27~-~7a2,77q+17---77m7527~-~7b2 a‘H|:m+q—~_2a
—_——— ~—_——
q+1 q+1 ]

Z = a3a"'aa3a<7"+1a"'<l7b37"~7b3 7|Z|:l—|—7‘+2

—_——— —_———
r+1 r+1 a

3.4.8 Algorithm for B-spline surfaces

An algorithm for the computation of the value of the B-spline surface in a
specified point [€, n]T is given in Algorithm 3.9.

3.4.9 Algorithms for B-spline surfaces derivatives

An algorithm for the computation of the value of a B-spline surface derivatives
in a specified value of the parametric space comes straightforwardly from the
definition in Equation (3.12) with the use of the linearity of the derivative:

O*S (&,n) _ ZzﬁkNp )811\7‘7() (3.13)

P,
8’“58117 1=0 j=0 171 !
_ [N @] O'N (n)

- [ o6 } [P, 5] 8;7 — | (3.14)

where, supposing £ € [55,554_1) and 7 € [773, 773-+1) we have § —p < r < & and
n;—q <5< ;. An implementation of this is in Algorithm 3.10.
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Algorighm 3.9 Algorithm for the computation of the value of a B-spline surface
in [§,7]" .

% bsplineSurfPoint evaluates a B-spline surface on a point (zi,eta)
% of the domain.
% Input:
n: defined acordingly to the knot wvector Xi;
p: degree in the first direction;
Xi: knot wector in the first direction;
m: defined accordingly to the knot wvector Eta;
q: degree in the second direction;
Eta: knot wector in the second direction;
P: control points written in the format P(zi, z=_k, eta);
zi: coordinate in the first direction on which the
surface is being evaluated;
eta: coordinate in the second direction on which the
surface i1s being evaluated.
Output :
S: walue of the surface in the point (zi, eta).
function S = bsplineSurfPoint(n, p, Xi, m, q, Eta, P, xi, eta)
xiSpan = findSpan(n, p, xi, Xi);
etaSpan = findSpan(m, q, eta, Eta);
Nxi = basisFuns(xiSpan, xi, p, Xi);
Neta = basisFuns(etaSpan, eta, q, Eta);
d = length(P(1, 1, :));
S(d) = 0;
for i = 1:d
S(i) = NxixP(xiSpan—p+1:xiSpan+1, etaSpan—q-+1:etaSpan+1, i)xNeta’;

NN IR LR EE K

3.4.10 Support structures

B-splines and the CAD technologies which will be presented later all share some
key concepts and attain compatibility. It is interesting therefore to define some
useful structures to work with these technologies, which will be further used in
Isogeometric Analysis.

The first concepts are the parametric space, which is the space where the
domain of the parametric form is defined and the physical space, which is the
space where the codomain of the parametric form is defined. The splines which
will be defined map points in the parametric space in points in the physical
space. Another space which can be useful is the index space, which is created
by plotting the knots equidistantly, regardless of their actual spacing, labeling
them with their index. In the parametric space we define, in addiction, the
anchor, which is the point in the parametric space which lies precisely at the
middle of the support of a basis function.

3.5 Univariate and multivariate NURBS’s

According to the same principle exposed in the subsection 3.3.1, not all curves
and surfaces can be represented with piecewise-polynomials only. Using the
same procedure of Subsection 3.3.1 so, we define a B-spline curve where the
basis functions are rational functions.
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Algorithm 3.10 Algorithm for the computation of the value of the B-spline
surface derivatives in a provided point of the parametric space.

% Compute B—spline surface derivatives in the specified point
% from order 0 to order d.
% Input
% n: defined accordingly to the knot vector Xi;
% p: degree in direction zi;
% Xi: knot wvector in direction zi;
% m: defined accordingly to the knot wvector Eta;
% q: degree in direction eta;
% Eta: mot wvector in direction eta;
% P: control points written in the format P(zi, eta, z_k);
% zi: point in direction xi in which the surface 4is to be determined;
% eta: point in dicrection eta in which the surface is to be determined;
% d: derivatives are to be computed up to order d.
% Output :
%  SKL: tridimensional matriz where SKL {k,l,i} is the ith
% coordinate derivative of S(wzi, eta) with respect to
% zi k times and to eta | times.
% Nzi: returns derivsBasisFuns (ziSpan, zi, p, d, Xi);
% Neta: returns derivsBasisFuns (etaSpan, eta, q, d, Eta);
% spanzi: returns spanzi = findSpan(n, p, wzi, Xi);
% spaneta: returns findSpan(m, q, eta, Eta).
function [SKL, Nxi, Neta, spanxi, spaneta| =
bsplineSurfDerivs (n, p, Xi, m, q, Eta, P, xi, eta, d)
% Determine the span in which the point [zi, eta] T is.
spanxi = findSpan(n, p, xi, Xi);
spaneta = findSpan(m, q, eta, Eta);
% Determine the derivatives.
Nxi = derivsBasisFuns (spanxi, xi, p, d, Xi);
Neta = derivsBasisFuns (spaneta, eta, q, d, Eta);
SKL = zeros(d+1, length(P(1, 1, :)), d+1);
for k = 0:d
for 1 = 0:d
for i = 0:length(P(1, 1, :))—1
SKL(k+1, i+1, 1+1) = Neta(l+1, :)*P(spanxi—p+1l:spanxi+1,...
spaneta—q+1l:spaneta+1, i-+1)’«Nxi(k+1, :)’;
end

end
end

SKL = permute(SKL, [1, 3, 2]);
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3.5.1 NURBS basis functions

A NURBS basis function can be defined using B-spline basis functions using the

relation
N ip (5 ) W;

R} (€) = ,a<E<D, (3.15)

where the N”’s are the B-spline basis functions already defined in (3.3) over the
knot vector

E=la,...,a, &1, &, 0,0 Bl =n+p+2,
~—— ~——

p+1 p+1
and the w;’s are the weights.

Propertyl: This choice of the basis functions guarantees the local support prop-
erty: R} (§) = 01if € & [&i, Gipptr)-

Property2: In any given knot span [¢;,&;4+1) at most p + 1 of the RY are
nonzero, namely the functions RY ... RY.

Property3: The property of nonnegtivity states that RY (£) > 0 for all i, p and
£

Property4: The property of partition of unity states that » ., Rg (&) =1 for
all € € [§, &it1)-

Property5: R () is O ((§;,&j+1)) for all j. At a knot RY (€) is p — k times
continuously differentiable, where k is the multiplicity of the knot.

Property6: If w; = 1 for all i then RY (£) = N? (£). This means that NURBS’s
are a generalization of the B-splines.

Property7: If no interior knot is defined in the knot vector, then NURBS’s are
a generalization of Béziers.

Property8: The set of all NURBS basis functions of p*h-degree RY (), i =

0,...,n defined on the knot vector
== gOa"'7£0a§15"'agla"'agka"'vgk
—_———— —— ———
S0 S1 Sk

forms a basis of the space NE of the of the piecewise-rational polynomials
of degree p with continuity C"i at & with r; = p — s;. It is possible to
show that the dimension of the space V¥ is

k
dim (V2) =k (p+1) = > (r; +1).
=0
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Algorithm 3.11 Algorithm for the evaluation of the i*" NURBS basis function.

% NURBSBasisFun computes the derivatives of the i—th NURBS basis function.
% Input :

i: index of the NURBS basts function;

zi: point where to ewvaluate the derivative;

n: number of control points minus 1;

p: degree of the NURBS basis function;

Xi: knot wector over which the NURBS basis function has to be built;
w: vector of the weights.

% Output :

R: wvalue of the derivative.

function R = NURBSBasisFun(i, xi, n, p, Xi, w)

NN KRN K

spanXi = findSpan(n, p, xi, Xi);
if i < spanXi—p || i > spanXi, R = 0;
else

N = basisFuns (spanXi, xi, p, Xi);
R = N(p+1l—(spanXi—i)).*xw(i+1)./(Nxw(spanXi—p-+1l:spanXi+1)’);
end

3.5.2 Algorithm for NURBS basis functions

It is important to have an efficient way of evaluating both a NURBS basis
function and its derivative: Algorithm 3.11 and Algorithm 3.12 respectively can
be used.

In Algorithm 3.11, we simply need to compute

D ONP(©)w;
i=0
the terms N? (£)’s can be computed with a single call to basisFuns(...).

3.5.3 Algorithm for NURBS basis functions derivatives

Algorithm 3.12 computes the function 9F!/a¢ in &:

ORV(E) _ 0 | NP (©w

o
@
i=0

23

By the linearity of the derivative, we can say

_— wige W) = N7 (©) wi ;0 e Y

o (W (€))?

where

W (&) =Y NP (&)w,
=0

The NP’s and the 9N /a¢’s can all be computed with a single call to, respectively,
basisFuns(...) and derivsBasisFuns(...) (according to our definition of
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Algorithm 3.12 Algorithm for the evaluation of the derivative of a NURBS
basis function.

% derivsNURBSBasisFun computes the value of the derivative of
the i—th NURBS basis function in the point zi.
Input:
i: index of the NURBS bastis function to compute;
zi: point in which to compute the NURBS basis function ;
p: degree of the NURBS basis function;
Xi: knot wvector over which the NURBS basis function have to be
computed.
w: wvector containing the weights.
Output:
R: walue of the i—th NURBS basis function computed in zi.
function R = derivsNURBSBasisFuns(i, xi, p, Xi, w)
n = length (Xi)—p—2;
spanXi = findSpan(n, p, xi, Xi);
% Computation of all the nonvanishing B—spline basis functions in xi.
Nips = basisFuns(spanXi, xi, p, Xi);

NN KRR

% Computation of the value for the denominator of the NURBS basis function

W = Nips*w(spanXi—p-+1:spanXi+1)’;

% Compitatio of the derivaives of the B—spline basis functions.
dNips = derivsBasisFuns (spanXi, xi, p, 1, Xi);

% Linear combinatio of the derivatives.

Cw = w(spanXi—p+1:spanXi+1)*dNips (2, :)’;

% Values of the i—th basis function and relative derivative.
Nip = basisFun(p, ntp+1, Xi, i, xi);

dNip = derivsBasisFun(p, Xi, i, xi, 1);

% Final result.

R = (w(i+1).#*dNip(1+1).*W — Nip.*w(i+1).xCw)./(W."~2);

derivsBasisFuns(...), a simple call to this function would be sufficient, as it
computes the derivatives of degree k = 0 as well).

Example 3.14. An example of derivatives of NURBS basis functions can be
seen in Figure 3.15. Cubic NURBS basis functions are plotted over the knot
vector = = {0,0,0,0,1,4,6,8,8,8,8} with the weights w =[1,1,1,3,1,1,1]. In
Figure 3.15b the respective derivatives are represented.

3.5.4 Univariate NURBS

As a result, a p'"-degree NURBS (Non Uniform Rational B-spline) curve (or
univariate NURBS) is

NP (&) wiP;
C¢)="F—— a<&<y, (3.16)
sz (f) Wi
i=0

where the P;’s are the control points forming the control polygon, which (3.16)
can be rewritten

CE)=> RI(P;, a<E<h, (3.17)
1=0

It is possible moreover to use homogeneous coordinates to get a better repre-
sentation of the NURBS:

CY (€)=Y N (P, a<&<h. (3.18)
1=0
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Figure 3.15: Representation of cubic NURBS basis functions are plotted over the

knot vector = = {0,0,0,0, 1,4, 6, 8,8, 8,8} with the weights w = [1,1,1,3,1,1,1]
in (a) and the respective derivatives in (b).

The properties of the NURBS curves are listed below.
Propertyl: If n=pand == {a,...,a,b,...,b} then C (&) is a Bézier curve.
Property2: Endpoint interpolation: C (a) = Py and C (b) = P,,.

Property3: Variation diminishing property: no plane has more intersections
with the curve than with the control polygon.

Example 3.15. In Figure 3.16 a circle has been built using a NURBS curve.
The NURBS is drawn using the data reported in Table 3.3.

il P [ wi |
0] [10" 1

1] Lyt | ywve
2 0,17 1

3] =1,1% | yva
4] [0 [ 1

50 [-1,-17 | yva
6 [0,-17 [ 1

7 n,-1" | yva
8| 1,07 1

Table 3.3: Data used for the construction of the NURBS circle of Figure 3.16.
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Figure 3.16: Representation of a unit circle with its control points in (a) and of
the NURBS basis functions used to build it in (b).

3.5.5 Algorithm for NURBS curves

Algorithms 3.13 and 3.14 can be used to evaluate a NURBS curve and its deriva-
tive. Algorithm 3.13 is a straightforward application of the definition of uni-
variate NURBS of Equation (3.16).

3.5.6 Algorithm for NURBS curves derivatives

It is possible to prove (see [24]) that the k' derivative of a NURBS curve
C™ (€) can be computed using the equation

k
AV -3 (F)u @t @

(e = " :

where A®) (€) is the vector-valued function which contains the first three com-
ponents of the k™ derivative of C" (¢) and w(® (€) is the i*® derivative of the
fourth component of C* (¢) (both can be computed with Equation (3.10) and
Algorithm 3.8) .

3.5.7 Multivariate tensor-product NURBS
Similarly, the form of a NURBS surface is
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Algorithm 3.13 Algorithm for the evaluation of a NURBS curve.

% NURBSCurvePoint evaluates a NURBS curve in the specified

% point zi.

% Input:

% n: defined accordingly to the knot wector;

% p: degree of the NURBS curve;

% Xi: knot wvector on which the NURBS is defined;

% Pw: weighted control points written in rows;

% zi: point in which the wvurve has to be evaluated.
% Output:

% C: wvalue of the curve in the point xzi.

function C = NURBSCurvePoint(n, p, Xi, Pw, xi)

span

d =

= findSpan(n, p, xi, Xi);
basisFuns (span, xi, p, Xi);
length (Pw(1, :));

Cw = zeros (1, d);

for j = 0:p

Cw(l:d) = Cw(1l:d) + N(j+1).xPw(span—p+j+1, 1:d);
end
C(1:d) = Cw(1l:d)./Cw(d);

Algorithm 3.14 Algorithm for the evaluation of the derivatives of a NURBS

curve.

% NURBSCurveDerivs computes all the k derivatives 0 <= k <= d of a NURBS

% curve.

% Input:

% n: number of the control points minus one;

% p: degree of the curve;

% Xi: knot vector over which the curve has to be built;

% Pw: weighted control points;

% xi: point where to evaluate the derivative;

% d: maximum degree of the derivative to calculate.

% Output:

% CK: CK(k) is the k—th derivative of the curve for 0 <= k <= d.

function CK = NURBSCurveDerivs(n, p, Xi, Pw, xi, d)

Aders = bsplineCurveDerivs(n, p, Xi

» Pw, xi, d);

wders = Aders(:, 3);
Aders = Aders(:, 1:2);
CK(1, :) = Aders(1, 1:2);

for k = 0:d
v = Aders(k+1, :);
for i = 1:k
v = v—nchoosek (k, i).xwders(i+1).*CK(k—i+1, :);
end
CK(k+1, :) = v./wders(0+1);
end
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where the P; ;’s are the control points forming the control net, the N/’s and
the N/’s are the B-spline basis functions already defined in (3.3) over the knot
vectors

== af17"'7a'17£p+17'"gnablw"vbl a|‘:‘|:n+p+27
—_——— —_——
p+1 p+1
H = a/27"'7a2777q+17"'nm7b27"'7b2 >|H|:m+Q+2>
—— ———
q+1 q+1

where the w; ;’s are the weights. As already done, it is possible to use the
rational basis functions

NP (YN (n) w; 5
Rp7q (é_ n) _ W: (é.) 7 (T]) 2,3 . a S 5 S b7 (319)
DD NI(ON! ()
1=0 3=0
to give another definition of a NURBS surface

n m

9 TR

=0 j=0

Again, homogeneous coordinates con be employed to give a more manageable
description of a NURBS surface:

=> Y NP (NI P, a<€&<b. (3.20)

i=0 j=0

The following are the properties of the bivariate tensor-product NURBS
basis functions.

Propertyl: This choice of the basis functions guarantees the local support prop-
erty: RYT(E,m) = 03 (§,m) & [ Givpr1) X 055 Mjtg41)-

Property2: In any given rectangle [, &io+1) X Mo+ Mjo+1) at most (p + 1) (¢ + 1)
of the R}/ (£,7) are nonzero, namely the functions R}’ (€, 7), for io —p <
i <ip and jo —q < j < Jo.

Property3: The property of nonnegativity states that Rp’q (&,m) > 0 for all 4,
Js Py ¢, § and 7.

Property4: The property of partition of unity states that 3, 377" o Ry (€,m) =
1 for all (&§,n) € [ao, bo] x [a1, b1].

Property5: Ri}q (6777) is C* ((fioagio-i-l) X (T’joanjo-i-l)) for all ia j> Z.0 and jO-
At a & (n) knot it is p—k (¢ — k) times differentiable in the £ (n) direction,
where k is the multiplicity of the knot.

Property6: If all w; ; = a and a # 0 then R}/ (&, 1) = N/ (£,m).
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[ i ] Pii \ Pis | Pis | wiq | wip | wigs |
1 [—1,0]" [—2.5,0]" | [-4,0]" 1 1 1
2 | [-1,v2-1]" | [-25,075]7 | [—4,4]7 [ a+vvap [ 1 | 1
3| [0-vz1]" | [~oms,25T | [—44” [avvap | 1 | 1
4 [0,1)7 [0,2.5]" [0,4)" 1 1 1

Table 3.4: Data used for the construction of the NURBS surface of Figure 3.18.

Property7: The set of all bivariate tensor-product B-spline basis functions of
pth degree in the ¢ direction and of ¢*"-degree in the 7 direction R} (& m),

1=0,...,nand j =0,...,m defined on the knot vectors
E= 507"'750751?"'751?"'7§k7"'7£k
—_——— ——— —_———
S&,O 8511 Sé,k
H= (N0, sM0, M s MyeeesMy-vesM
———— —— ——
51,0 Sn,1 Sn,l

forms a basis of the space NE'Y, of the piecewise-rational polynomials of
degree p in the & direction and degree q in the n direction, with continuity
C"¢i an direction § at & with r¢ ; = p — s¢; and with continuity C"J
in direction n at n; with r, ; = ¢ — s, ;. It is possible to show that the

dimension of the space NL'}; is

k l
dim (MZ) = | k(p+1) =3 (rey + Ha+1) =3 (ry +1)
j=0 7=0

Example 3.16. Figure 3.17 shows the bivariate tensor-product NURBS basis
functions built over the knot vectors = = H = {0,0,0,0.5,1,1,1} with p=¢ =
2.

Example 3.17. Figure 3.18 shows a surface drawn with a NURBS surface.
The hole drawn in corner is quarter of a cirle and it requires a NURBS to be
drawn. The data necessary to draw the surface is reported in Table 3.4.

Some important properties of the B-spline surfaces are listed below.

Propertyl: If n=p, m=g¢q, Z2=|a,...,a,b,...,b] and H = [a,...,a,b,...,}]
then S (§,n) is a Bézier surface.

Property2: Endpoint interpolation: the surface interpolates the four corner
control points S (a1,as) = Py, S (b1,a2) = Py, S(a1,b2) = Py, and
S (b1,b2) = Py

Using the tensor product, a solid can be expressed using three sets of basis
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Figure 3.17: Bivariate tensor-product NURBS basis functions built over the knot vectors =
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4 - 1
AN
\ D
35} \ S 1 08
\ \\\ 0.6
3l N S |
N = L {04
N TR
25} \ ] 11 oz
N 7 \ ’
i\
> 2} \ // \\ 0
\ @ \
15} ) v \ 02
B o
\ L ‘& -0.4
1F N >
o / ~0.6
0.5f \ 4 -08
| |
0 = + ‘ -1
-4 -3 -2 -1 0
X

Figure 3.18: Representation of a square surface with a hole in a corner.

functions
n m 1
DD UNP(©) N (1) NY (Q) wi kP
S(&n.¢) = = La<E<b (321)
ZZ NP (€) N{ () NF (Q) wi i
i=0 7=0 k=0

where the P; ; 1’s are the control points of the solid, the N?’s, the N;-I’s and the
N[’s are the B-spline basis functions defined in (3.3) over the knot vectors

== al?"'aa1u£p+17"'§n7b17"'7b1 7|E‘:n+p+27
—_——— ———
p+1 r+1 |

H = a27'-~7a2,nq+1a""r]m7b27"',b2 a|H|:m+q+2a
—_——— —_——
q+1 q+1 ]

Z = a33"'7a37<7“+1a"~<l7b37"'7b3 ) |Z| =l+r+2

—_—— —_——
r+1 r+1 i
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Algorithm 3.15 Algorithm for evaluating the value of a NURBS surface in

(&,n).

% NURBSSurfPoint evaluates a NURBS surface on a point (zi, eta)

% of the domain.

% Input:

n: defined acordingly to the knot wvector Xi;

p: degree in the first direction;

Xi: knot wvector in the first direction;

m: defined accordingly to the knot wvector Eta;

q: degree in the second direction;

Eta: knot wector in the second direction;

Pw: weighted points written in the format P(zi, = k, eta);

zi: coordinate in the first direction on which the
surface is being evaluated;

eta: coordinate in the second direction on which the
surface i1s being evaluated.

NN IREL RN E K

Output :
S: walue of the surface in the point (zi, eta).
function [S]| = NURBSSurfPoint(n, p, Xi, m, q, Eta, Pw, xi, eta)

xiSpan = findSpan(n, p, xi, Xi);
etaSpan = findSpan(m, q, eta, Eta);
Nxi = basisFuns(xiSpan, xi, p, Xi);
Neta = basisFuns(etaSpan, eta, q, Eta);
d = length(Pw(1, 1, :));
Sw(d) = 0;
for i = 1:d
Sw(i) = NxixPw(xiSpan—p+1:xiSpan+1, etaSpan—q-+1l:etaSpan-+1,
end

S = Sw(l:d—1)./Sw(d);

OO0~ Utk WN -

and the w; j; ’s are the weights. Defining the B-spline rational basis functions

RPTI(Em,¢) =

(3.21) can be written in a simpler form:
n
L
S mn.¢) = ZZZ RPS(Em, Q) Pijr, a <E<D.
i=0 j=0 k=0
As usual, the usage of homogeneous coordinates reduces (3.21) to

n m l
YEMO) =D Y D NP NI () NL(Q Pk, a<€<b.

1=0 j=0 k=0

3.5.8 Algorithm for NURBS surfaces

Equation (3.20) is used in Algorithm 3.15 to determine efficiently the value of
the surface in (&, 7).

3.5.9 Algorithm for NURBS surfaces derivatives

It is possible to use Algorithm 3.16 to evaluate the derivative of a NURBS

surface. It uses Algorithm 3.10 and Equations (3.14) to evaluate the derivatives
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Algorithm 3.16 Algorithm for the evaluation of the derivative of a NURBS
surface.

of order up to O0<=k+l<=d, k times with respect to zi and | times with
respect to eta.
Input:
n: defined accordingly to the knot wvector Xi;
p: degree in direction zi;
Xi: knot wvector in direction Xi;
m: defined accordingl to the knot wvector FEta;
q: degree in direction eta;
Eta: knot wvector in direction eta;
Pw: weighted control points;
zi: value in which to evaluate the surface in the zi direction;
eta: wvalue in which to evaluate the surface in the eta direction;
Output :
SKL: derivatives of the NURBS surface S(zi, eta)
of order up to 0<=k+l<=d, k times with respect to zi and | times
with respect to eta. SKL(k, 1) contains the derivatives of the

R O O N R R O R R R

% respect to eta.

function [SKL]| = NURBSSurfDerivs(n, p, Xi, m, q, Eta, Pw, xi, eta, d)
Aders = bsplineSurfDerivs(n, p, Xi, m, q, Eta, Pw, xi, eta, d);
wders = Aders(:, :, end);

Aders = Aders(:, :, liend—1);

Bders = permute(Aders, [1, 3, 2]);
SKL = zeros(d+1, d+1);
for k = 0:d

for 1 = 0:d—k
v = Bders(k+1, , 141)
for j = 1:1
v = v—nchoosek (1, j).xwders(0+1, j+1).*xSKL(k+1, :, 1—j+1);
end
for i = 1:k
v = v—nchoosek (k, i).xwders(i+1, 0+4+1).«xSKL(k—i+1, :, 1+41);
v2 = 0;
for j = 1:1
v2 = v2+4nchoosek (1, j).xwders(i+1, j+1).%...
SKL(k—i+1, :, 1—j+1);
end
v = v—nchoosek (k, i).xv2;
end
SKL(k+1, :, 1+1) = v./wders(0+1, 0+1);
end

end
SKL = permute (SKL, [1, 3, 2]);

of ¥ (&,n) (S (&,m) can, as said, be expressed by a B-spline curve where
instead of points with three components, four components weighted points are
used). Starting from S™ (£,17) we can compute the derivatives of the NURBS
surface S (¢,n) with the equation

otkont  w ok ont

_|_

OIS (Em) 1 [OHAE ) i <k) 0w (&) 0S8
- i ogi (%k—ianl

_i I Pwdt =18 (&)
oni  Otkomi—J

=

B\ o 1\ 0itiw (&) 9~ +1=1 8 (&)
()5 () e s

N.
I M?r
)
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3.6 T-splines

An interesting technology from the point of view of both CAD and Isogeometric
Analysis is the T-spline technology, initially introduced by Sederberg in [28]. T-
splines allows:

1. add details only where necessary;
2. maintain NURBS compatibility;
3. allow watertight placement of patches;

4. reduce the total number of control points.

3.6.1 T-mesh and basis functions

The definition of a T-spline begins from the index space of a T-mesh, where
knots are defined as before, and are placed equidistantly on a rectangle. In this
case, however, T-junctions are allowed: T-junctions are vertices formed by the
intersection of three edges. This is not possible in NURBS and B-splines.

Let’s consider a B-spline basis function N2: according to the properties al-
ready explained, it’s support comprise only the knots &/, to &, ;. These knots
form the local knot vector Z¢,, where i is the direction, and the corresponding
anchor is s,.

If p is odd, for each index space direction, we create a local knot vector ZJ,
and =2, which are empty at the beginning. Next, we place £} in =), and sz in =2
supposing s, = {i,j}. Next, we travel horizontally on one side of the anchor,
and for each orthogonal edge k encountered, we add &} in =} until we have
added a total of p+1/2 knots. The same has to be done travelling horizontally
on the other side of the anchor until we’'ve added a total of »+1/2 knots. On
both sides, if less than p+1/2 knots can be added as no more orthogonal edges
are found, we repeat the last one until that value is reached. The same process
is repeated in the other direction.

In case p is even, anchors are located inside an element and not at intersec-
tions. So, the same process is repeated, without adding the first knot to the
knot vector and we insert a total of »/2 4+ 1 knots instead of p+1/2.

For a given T-mesh and degree p, let A C Z? be the index set containing
every a for which s, is an anchor. Using the Z!’s and the Z2’s we are able to
define B-spline basis functions NP (&) defined in the parametric space. For each
a € A we define a control point P, € R? (d can be chosen accordingly to the
dimension of the physical space) and a weight w, to construct a set of T-spline
blending functions

- wao N (€)
Ra (5) - ZBGA wﬁNg (5)7

for which the partition of unity is still valid.

The same definitions and procedures can be generalized almost straightfor-
wardly to three-dimensional spaces to create T-spline solids.
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Figure 3.19: Partial isoparms and T-points.

3.6.2 Advantages

T-Splines surfaces can contain areas with differing levels of detail (see Figure
3.19). Control points may be added only where needed so that a typical T-Spline
surfaces will have up to 50% fewer control points than the identical equivalent
set of NURBS surfaces. In other words, T-Splines are similar to NURBS, with
the difference that you can have partial isoparms (isocurves or isosurfaces). A
main difference between T-Splines and NURBS is the existence of T-points:
vertices where on one side, there is an isoparm, and on the other side, there
isn’t. The surface is always smooth (C?) at a T-point. NURBS’s don’t allow
T-points.

There are various types of surfaces for which it is necessary to use multi-
ple NURBS surfaces (polysurfaces) to be drawn: extrusions, holes, and other
unique features are easy to create in a T-Spline surface. This is another dif-
ference between T-Splines and NURBS. NURBS require multiple surfaces, or a
polysurface, for such objects. T-Splines can accommodate these features in a
single surface, by using a special point called a star point (see Figure 3.20).

T-splines are a generalization of NURBS’s, so there is a complete back-
compatibility (see Figure 3.21 and 3.22), which is an important feature when
T-splines are to be introduced in a industrial environment, where most models
are NURBS-based.
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Figure 3.20: Example of a single T-spline surface designing a complex object
with holes. NURBS would require multiple surfaces or polysurfaces.

Figure 3.21: On the left car model designed using T-splines, on the right the
same exact model is converted to a NURBS-based model.

University of Padua Faculty of Engineering




114 CHAPTER 3. BEZIER, B-SPLINE, NURBS AND T-SPLINE

MURES surfaces
1168 contraol points

T-5plines surface
321 comtrol points

Figure 3.22: Comparison of the number of control points in a NURBS-based
and in a T-spline-based model.
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Chapter 4

Isogeometric Analysis

Recently, a new proposal has been developed and published in [3, 18]. The
Isogeometric Analysis is a generalization of the Finite Element Method: while
the latter employs only piecewise-polynomials for both the description of the
geometry and the approximation of the solution, the former replaces them with
different elements.

The starting point of the analysis of the benefits of the two is the analy-
sis of the engineering design industry. The design description of objects and
structures is embodied in Computer Aided Design systems (CAD), which has
to be translated to an analysis-suitable geometry for mesh generation and use
in Finite Element Analysis. This translation is, however, difficult, and turns
out to need a considerable part of the overall process of analysis. After years
of usage of Finite Element Analysis, it can be stated that design and analysis
are not separable endeavors. However, many attempts at integrating CAD and
FEM have failed.

The translation of the CAD model to a FEM suitable model is not a trivial
task, and the creation of a mesh implies the introduction of a relevant approx-
imation to the exact CAD model, which can result in analytical errors. The
possibility of mesh refinement is of course available, as it can be seen from
Chapter 2, but this requires a continuous and automatic communication with
the CAD model, which is often not possible in the industry environment. Taking
advantage of parallelism in computing the transformation of the CAD model is
not simple as it is not known how to manage concurrency in mesh generation.
A possible way of overcoming to these problems with Finite Element Analysis
is to redesign the entire process of analysis, building one model only where it
is possible to design and analyze. This is of course a huge change and requires
a new analysis model based on the exact CAD representation. These are the
concepts and reasons which lie behind Isogeometric Analysis, which is based on
the same geometry representation employed in CAD models. The most used
technology in CAD design is NURBS, but it would be possible to adapt the
model to many other technologies, like T-splines.
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Finite element analysis \

Shared concepts

\ Isogeometric analysis ‘

Nodal points

Control points

Nodal variables

Control variables

Mesh

Knots

Basis interpolates
nodal points and
variables

Basis does not
interpolate control
points and variables

Approximate geometry

Exact geometry

Polynomial basis CAD basis
Gibbs phenomena Variation diminishing
Subdomains Patches

Compact support
Partition of unity
Isoparametric concept

Table 4.1: Comparison of the elements of FEM and Isogeometric Analysis.

4.1 FEM and Isogeometric analysis

4.1.1 General framework

Let’s summarize again the model we’re analyzing, already presented in Chapters
1 and 2. Consider again a second order elliptic PDE on the domain €2 with
Lipschitz-continuous boundary I' = I'p UT'y. The equation we would like to
solve for u can be written as in Equation (1.10).

From the strong formulation, the weak formulation can be derived as in
Equation (1.11).

The Galerkin projection replaces the infinite-dimensional space V' by the
finite-dimensional subspace V}, spanned by N}, basis functions ¢;,71 = 0,1, ..., Np—
1. This way, the approximate solution must satisfy

a(vn, i) = 1(pi), Yoi € Vp.

Being the space V), linear, it is possible to write vj, as a linear combination
Nn—1 U3, so that we obtain the linear system Sy - Uy = F', where

1=0
S =la(pj, )]y and Fj, = [l ()]0 .

Vp =

4.1.2 Isoparametric FEM

A possible choice for the basis functions, as already showed, are the piecewise-
polynomials. When this is the choice, and the space of the weighting functions
is equal to the set of the trial solutions, the Galerkin method is named FEM.
The isoparametric concept is invoked and the boundaries of the nodal finite
elements are approximated using the same basis functions used in the approx-
imation of the solution. The domain is approximated and divided in nonover-
lapping elements over which the basis functions are defined. Integrations are
then performed over the reference element, where adequate integration nodes
are defined.

As already illustrated in Chapter 2, possible refinements for the FEM ap-
proach are h-refinement, which refines the mesh over the domain, p-refinement,
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which elevates the degree of the nodal basis functions and hp-refinement, which
both elevates the degree and refines the mesh.

4.1.3 Isogeometric approach

Another possible choice for the shape functions are the CAD basis functions,
such as B-splines, NURBS’s, T-splines etc... (the important elements can be
found in Chapter 3).

As already pointed, Isogeometric Analysis is an attempt at merging the en-
gineering design and analysis: this is why the first step of Isogeometric Analysis
is the description of the geometry of the problem through an “exact” descrip-
tion, which is the same used in the CAD model. According to the isoparametric
concept, assuming B-splines are used to represent the geometry with a CAD
software, the same B-splines are used in the analysis, thus allowing the use of
a geometry which is exactly the same as that of the CAD model. One concept
has to be remarked: it is usually not possible to use directly the CAD model
in the analysis. The CAD description usually represents the boundaries of the
geometry, whereas the complete computational domain has to be included in
the representation for the analysis, as solution fields are to be computed. This
means that, for two-dimensional problems, the analysis needs a surface, and not
the only boundary; for a three-dimensional problem, the entire solid is needed,
not only the surfaces of the solid.

The basis functions are defined over what we call the parametric space, which
is typically the unit segment [0, 1] in one-dimensional problems, the unit interval
[0,1]% in two-dimensional problems and the unit cube [0, 1]® in three-dimensional
problems. It would be very comfortable to define the shape functions used in
the analysis using the same CAD basis functions, but defined on the physical
space. This is, indeed, possible by using a geometrical map & : Q= [0, 1]d — Q,
where d is the dimension of the CAD basis functions used in the description of
the geometry. Assuming B-splines are used, for instance, & (£) is an element of
the B-spline space ngl.f'_'_ézgd; s0, according to the definitions of Section 3.4, in
the one-dimensional case we may write the geometrical map as

(€)= NP(P; eS8 ¢cQ=[01CR,
=0

where the B-spline paraphernalia is defined as usual: the {P;}!" ,’s are the
control points, the {w;};_,’s are the corresponding weights and the B-spline
basis functions N? (¢)’s used when expressing the RY (€)’s are defined over the
knot vector

E= {60 = 07525 cee a§n+P7§n+p+1 = 1} .

Remark 4.1. From now on, the CAD basis functions are going to be defined
with a overlying tilde to attain some kind of correlation in notation with the
shape functions defined on the reference domain of Chapter 2. When the CAD
basis functions are written without the tilde, they denote the definition in the
physical space.

According to the definitions of Section 3.4, in the two-dimensional case we
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have the geometrical map

ZZN” &) Py €S8, €=[6m" €Q=1(0,1] x [0,1] C R?,

=0 j=0

where n + 1 and m + 1 are the numbers of control points in the two directions
of the control net and the Np’q (&€,m)’s are the B-spline basis functions. The B-
spline paraphernalia is deﬁned as usual: the {P; j}n o o s are the control points

the B-spline basis functions Nf (£)’s and N (n)’s are defined over the knot
vectors

E= {EO =0,&1,. .. 7£n+p>§n+p+1 = 1}7
H = {770 = 07n1a sy Mmtqs ImA4-g+1 = 1}

With these tools in hand, we can define the B-spline basis functions in the
physical space by using the geometrical map and their definition in the para-
metric space (which is simple to compute)

NP () = NJf () = NP (@ (€,m)) = NI (€m) = N (€),

and the solution fields can be written according to the isoparametric concept as

§-33 w

i=0 j=0

T)i,j-

\’Q

The same concepts can be applied when using the NURBS basis functions
to define the geometry. The map, in the two-dimensional case is, then:

ZZRIM] 577 P,] 6'/\[I)7H1117 5 [5777]T€Q:[0’1] X [0’1] CRQ'

=0 j=0
Example 4.2. Suppose we want to map the parametric space ) = [0,1] to
the space Q = [xg = —3, 21 = 5]. Suppose moreover that the design phase has

developed a model which uses the knot vector = = [0,0,1, 1], with p = 1. We
can derive the B-spline basis functions of degree 0
1, 0<¢<0
NV = U= =
0 (&) {0, otherwise
1, 0<¢<1
No _ s >
1 (©) {0, otherwise ’
I, 1<§<1

0, otherwise B

M) - {

and then we can build recursively the B-spline basis functions of degree 1

-0 1— 1-¢ 0< 1
Ny (&) = ngNg (6) + T(f)N? & = {0 ¢ othefv;se ’
—0 — , 0<Z 1
Ni (&) = %N? ©+—MN2(6) = {(E) othefv;se )
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The B-spline basis functions can be used to build the NURBS basis functions
(in case the initial model used NURBS’s) which are the shape functions defined
on the parametric space (assuming all weights equal to 1 we get the B-spline
basis functions):

R (6) NG {1—5, 0<é<1

1 . 0, otherwise ’
> NH(©)
i=0

1 _ N701 — & 0=&<l
Ry (&) = 1 ) o {07 otherwise -
SN (E)
i=0

We can finally write the geometrical map # : Q — Q
(€)= Ny (&) zo + Ni (€) 21,
or using the NURBS basis functions
(€)= Ro (&) w0 + Ry (€) z1.

With the geometrical map it is possible to map points from the parametric
space to the physical space, and it is possible to define the shape functions on
the physical space by using the definitions we already gave in the parametric
space. Suppose we want to find the correspondent & of the point f = 1/2, it is
sufficient to use the geometrical map this way:

izi(f) :R5<é)~x0+R} (é)';1:1:—3-(1—1/2)+5~(1/2):1.

The definition of the shape functions in the physical space can be found by
composing the RY (¢)’s with the inverse of the map

T (&) =x0 — & (w0 — 71),

which is _
-\ _ To—T
€(3) = .
The composition yields to

R () = R} I
0 () 0(§) & (x) o
R! () = R! =23
(@) = R} (o€ () = 7

It is simple to see that these are exactly the roof functions used in linear
FEM.

Isogeometric Analysis offers, just like FEM, the possibility for h-refinement,
by knot insertion (see 4.5.1), p-refinement, by degree elevation (see 4.5.2), hp-
refinement and ph-refinement, which is a new possibility not offered by classical
FEM.
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4.2 One-dimensional problems

The first step in the resolution of a one-dimensional problem defined on the
domain Q = (a,b), is the presence of the CAD model of the geometry which
comprise a set of n 4+ 1 control points P;, ¢ = 0,...,n, a set of n + 1 weights
w;, 1 =0,...,n, and a knot vector

E= Oa"'aoagp-‘rla"'577,717"'71 7|E‘|:n+p+27
—— ——

p+1 p+1

where p indicates the degree of the NURBS curve (suppose we’re working with a
NURBS model, but the same considerations can be applied to B-spline models).

Starting from the weak formulation for a one-dimensional problem, which is
the same written in a more general form in (1.13):

a(v,p) =1(p), Vo e H' (Q)
with
a(v,@) = / (10" - " + aguy) da
Q

b
L(p) = /Q (fe—ary - @' —aove)de + [ar (v+7) @],
equipped with the boundary conditions
v=0,Vrelp

(U—‘r’}/)/ =gn, Vx €Ty

where u = v + 7, a sequence of steps is needed to get an approximation.

Knot vector (mesh) In the Isogeometric Analysis, the mesh is represented
by the knot vector Z.

Application of the Galerkin method The Galerkin method remains al-
most unchanged: it is possible to express the unknown function v as a linear
combination of the basis functions of the space

span{RY (), a <2z <b,i=0,...,nli € G\Gp},

where p is the degree of the NURBS basis functions RY, i = 0,...,n defined on
the physical space (2 and where

Gp = {i|P; = (zs,y:) |xi € I'p},

G = {i]3P, = (zi,y:)} -

Remark 4.3. Tt is important to note that the basis functions are defined in the
physical space, and not in the parametric space.
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The approximate solution v can then be written as the linear combination

vp, () = Z U RY (z).

1€G\Gp

A possible choice for 7 is

v(@) = 9o (P) R} (2). (4.1)

1€Gp
By substitution we get:
ORP ORF
P pp) _ i Y D RP 4.2
a (R}, RY) /Q<a1 5 O +a0RZRJ) dz, (4.2)
ORP ORF
Py — D]y — P, i J
1(RY) /Qijd:v /Qal 'Z ap (P,) 5 L+ Ldu+
1€Gp
_ / a0 3 g (P) RVRVdx + [argn RV (4.3)
Q

1€Gp

The system of algebraic equations is written with the following stiffness matrix
and force vector

Sh=la (Rf’Rg))]i,jeG\GD ; (4.4)
Fp=1] (RQLGGWD , (4.5)

and the vector of unknowns

Y1 = [Oicaran -

It can be seen that Neumann and Dirichlet boundary conditions are imposed
just like in FEM. Our choice of v in Equation (4.1) is possible only for open
knot vectors, for which the solution field interpolates the degrees of freedom at
the extremity of the patch (3.5.4). This is possible only for boundary control
points as the NURBS basis functions reach the unity only at the boundary.

Example 4.4. Consider the problem of Example 2.23: the exact solution and
the weak formulation (Equation (2.14)) has already been derived. Considering

the knot vector
» Uy 37 3a )

and basis functions of p'" = 15t-degree, Isogeometric Analysis turns out to be
equivalent to the Finite Element Method, as the basis functions employed are
the roof functions defined in (2.10).

Example 4.5. Consider the problem of Example 2.23: the exact solution and
the weak formulation of the problem have already been derived. Isogeometric
Analysis can be used instead of Finite Element Method to get an approximation
of the result. Using the knot vector

2, ={0,0,0,1,1,1}
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— — — Exact 4
0 — Approx // 4
X 4
3: -1F N > g 4 1
~ ~
o} R - - 4
3 i i i i
0 0.2 0.4 0.6 0.8 1
X
(b)
1
0.8 i
o 0.6 b
- 041 i
0.2 i
0 T i i I
0 0.2 0.4 0.6 0.8 1

Figure 4.1: (a) Representation of an approximation (black curve) of the solution
of the problem of Example 2.23 whose exact solution is plotted in red. The ap-
proximation is obtained using the knot vector Z; = {0,0,0,1,1,1}. (b) NURBS
basis functions used for the approximation.

and NURBS basis functions on = of 2"d-degree, the approximation of Figure
4.1 can be achieved.

It is possible to use different knot vectors in order to obtain a more accurate
approximation in specific areas. In Figure 4.2 the knot vector

=, ={0,0,0,0.1,0.2,0.3,1,1,1}

is used. It can be seen that the leftmost part of the approximated curve is more
accurate as the space used to represent the approximation is larger. In case the
same number of knots is better distributed on the domain like in

=3 = {0,0,0,0.25,0.5,0.75,1, 1,1},

the entire curve is more accurate than the case of Figure 4.1, at the cost of a
less accurate leftmost part respect to the case of Figure 4.2.

Algorithm 4.1 presents an algorithm for the computation of the DOFs in
one-dimensional problems.

4.2.1 Transformation of the model to the parametric space

The case presented in Section 4.2 can be simply solved evaluating the integrals
in Equations 4.4 and 4.5. It is possible a similar process to that developed in
Subsection 2.3.2. The reference element in this case is the unit interval [0, 1],
the unit square [0,1])* or the unit cube [0,1]%: the difference is that the entire
geometry is mapped in these elements, and not only single elements of the

physical space.
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— — — Exact
0 : —— Approx |-/
2
Z
:‘: _1 7 -
v
z
_2 ~ =7 R
-3 i i — i
0 0.2 0.4 0.6 0.8 1
X
(b)
1
0.8 : i
o 0.6 1
T 0.4 4
0.2f 1
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Figure 4.2: (a) Representation of an approximation (black curve) of the solution
of the problem of Example 2.23 whose exact solution is plotted in red. The ap-
proximation is obtained using the knot vector 25 = {0,0,0,0.1,0.2,0.3,1,1,1}.
(b) NURBS basis functions used for the approximation.

— — — Exact
0 — Approx |
= 1 ]
-2+ B
_3 i i i i
0 0.2 0.4
1
0.8
o 0.6
T 04f \
0.2
0 i
0 0.2 0.4

Figure 4.3: (a) Representation of an approximation (black curve) of the
solution of the problem of Example 2.23 whose exact solution is plot-
ted in red. The approximation is obtained using the knot vector Z3 =
{0,0,0,0.25,0.5,0.75,1,1,1}. (b) NURBS basis functions used for the approxi-
mation.
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Algorithm

4.1 Algorithm for the computation of the DOFs through IGA in a

one-dimensional problem.

function [S
a = Xi(1);
b = Xi(end)

, F, u] = IA1DBsplines(a_1, a_0, f, xi_a, xi_b, Xi, p)

3

m = length(Xi) — 1;
for i = 1:(mp—2)

1:(m—p—2)

integrand = Q(y) stiffnessIntegral(a_1, p, Xi, i, j, y);

, J) = quad(integrand, a, b);

integrand = @Q(y) forcelntegral(a_1, f, xi_a, xi_b, p, Xi, i, y);

for j =
S(i

end
F(i, 1)

end

S

F

u

= quad (integrand , a, b);

= linsolve (S, F);

function s = stiffnessIntegral(a_1, p, Xi, i, j, y)
for k = 1:length(y)

derivsl = derivsBasisFun(p, Xi, i, y(k), 1);
derivs2 = derivsBasisFun (p, Xi, j, y(k), 1);
s(k) = a_ 1(y(k)).*derivsl (2).xderivs2(2);
end
function force = forcelntegral(a_1, f, xi_a, xi_b, p, Xi, i, y)

for k = 1l:length(y)

derivs = derivsBasisFun(p, Xi, i, y(k), 1
N = basisFun(p, length(Xi)—1, Xi, i, y(k)

force(k) = f(y(k)).*N —...
a_1(y(k)).*dgamma(xi_a, xi_b, p, Xi, y(k)).xderivs (2);

end

function dg

= dgamma(xi_a, xi_ b, p, Xi, y)

for k = 1l:length(y)

derivsl
derivs2
dg(k) =

end

= derivsBasisFun (p,
= derivsBasisFun (p,
xi_a.xderivsl (2) +

Xi, 0, y(k), 1);
Xi, length(Xi)—p—2, y(k), 1);
xi_b.xderivs2(2);
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Transformation of functions to the parametric space Functions can be
transformed to the parametric space by composing them with the geometrical
map I:

a (§) = (ar o) (§) = a (£ (£)), 1 =0,1
RY(§) = (R 0 &) (€) = RY (¥ (9)), -,
F&=(for)(©)=F(@(9).

Transformation of derivatives to the parametric space The transfor-
mation of the derivatives can be found using the chain rule

81:35) _a(ngofc)(g):aRf(j(g)),ai(g)’l:O,...,n.

For future use, the term (9%/a¢) (§) will be denoted with Jz (§), which in the
one-dimensional case is equal to it’s determinant |Jz (£)].

Transformation of integrals to the parametric space The last part of
the process consists in the transformation of the integrals of the linear and of
the bilinear forms of Equations (4.2) and (4.3)

OR! OR]
a(Rf,R?):/( 2 8;+aoRfR§>dx

aRP ORY
P
L(RY) = /fRd:c /alng g
i€Gp
/ao Z ap ( Rpdez+ [algNRp]

i€Gp

to the parametric space. This step can be done by using the substitution theo-
rem (see Section B.3), as already done in Sub subsection 2.3.2.2, on the bilinear
form

a(RY,RY) = /5:(@)(( 681;2: a£§>(x)+(aoRfR§) (x)) dz,
/Q(< 85 aaiz‘})(f(é)H(aoRfRf) (ﬂf))) Tz (€) g,

hand on the linear form

L(RY) = /Q (FR?) (2 (€)) dé+

) o
- [ Y e <a£'~6;)<f<£>>d§+

i€Gp

/ @) 3 b (P) (RPRY) (3 () do + [ax (7 (&) gw BT (3 ()]

1€Gp
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By substituting the functions derived above, we get that the bilinear form can
be evaluated in the parametric space with the equation

i, OR? ORY -
o)~ (22 i) o)

and the linear form with the equation

o= [ (R i (§) ) (95 O8]
Z(Rj)_‘/ﬁ‘]w (ij) (€) d€ — o Js ZQD(P1)<(9£ ) a§>(£)d€+

i1€Gp

— [ a0(©) 3 a0 (R) (BRIRD) (©de + a1 (v (€) B ©)]

i€Gp

4.3 Two-dimensional problems

As already pointed in Section 4.2, we assume we are given a NURBS-based
model of the physical space with which we have to work. In the two-dimensional
case, this means we are given a net of (n+1) - (m + 1) control points P; j,
i=0,...,n,j=0,...,m,aset of (n+1)-(m+1) weights w; ;, i =0,...,n,
7=0,...,m, and two knot vectors

2=20,...,0,&11,- b1, 1y [El=n4p+2,
—— ——

p+1 p+1

H=<0,...,0,741,- -, 1,..., 1 p, |[Hl =m+q+2,
—— ——

q+1 q+1

where p and ¢ are respectively the degrees in the £ and in the n direction.

Consider again the problem of solving an elliptic PDE equipped with bound-
ary conditions on a two-dimensional domain like (1.10). Isogeometric Analysis,
like the Finite Element Method, works on the weak formulation instead of work-
ing on the classical formulation. So, the same process applied in Sub-subsection
1.4.1 is necessary prior to the use of Isogeometric Analysis, and leads to the
weak formulation in (1.13) or in (1.12). The key equations are reported:

a(v,p) =1(p), Vo H (Q)

where

a(v,p) = //Q (a1Vu - Vo + agup) dz, v,p € H! (Q)

l(@)=//Q(f<p—alV’v-th—aow)der/F (ar1gn) dS, Vo € H' ().

N
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Figure 4.4: Effects of the creation of a mesh with linear elements on a real world
model built using T-splines.

Approximation of the domain As explained in Section 2.4, the applica-
tion of the Finite Element Method in the solution of two-dimensional problems
requires some variational crimes. These variational crimes begin with the ap-
proximation of the domain € with another domain €2, which is exact only in
case the boundaries are piecewise-polynomials of the same degree of the shape
functions used in the analysis. This first approximation leads to the need of
approximating the boundaries and the Hilbert space. In the Isogeometric Anal-
ysis, the geometry is expressed through the use of the same CAD functions used
in design, which means the exact definition is used instead of an approximated
one. In Figure 4.4 it can be seen how the creation of a mesh with linear elements
can affect the model which is to be analyzed.

Knot vectors (mesh) In the Isogeometric Analysis the Subdomains are
called patches (see Table 4.1), and they are defined by the use of adequate
knot vectors. It is possible to associate a mesh K in the parametric space to the
knot vectors

’C(E7H)é{K:[§l7£’b+1]®[n]anj+1]#®a ’L:O)an_17]:O7am_1}

Approximation of the boundaries In the Finite Element Method the use
of the approximated domain €2, instead of €2 can require the redefinition of the
boundary conditions, as it is possible that the new boundary 0, differs from
0. In Isogeometric Analysis the representation of the geometry is exact and
this means there is no more the need for an approximation of the boundary
conditions as well. Here, again, no variational crime is committed.

Approximation of the Hilbert space The Hilbert space is still defined on
the physical space €2, so there is no variational crime as there was in the Finite
Element Method.
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Weak formulation The weak formulation remains unchanged as no varia-
tional crime has been committed.

Application of the Galerkin method The Galerkin method remains al-
most unchanged. As usual, it is possible to express the unknown function vy, as
the linear combination of elements of the Galerkin subspace

v (z,y) = Z Ry (2, y) Ui, (4.6)
[1,j]€G\GDp

where the ©; ; are the degrees-of-freedom and Gp is now defined by the set
GD = {[2,]], i:O,...,n, j:O,...,m\Pi’j EFD},
and
G=A{lj,i=0,...,n, j=0,...,m|3P; ;}.

Remark 4.6. It is important to note that, like in the one-dimensional case, the
basis functions are defined in the physical space, and not in the parametric
space. In this case, moreover, it is not simple to define these functions. This
problem is addressed in 4.3.1.

The new problem is now expressed by the linear system of equations

S oy // (ax VY - VRS + agRVSREY) da =
[1,]€G\Gp @

//Q (FREE - a9y - VELY — aoyRYY ) da + /F argn RLdS,
N
for all [k,l] € G\Gp. We can again write the Dirichlet lift as

y(@)= > RV(x)gp (Pi;),
[7;7j]€GD

getting the new system

S oy // (axVRES - VRES + ag REI RS de =
[i,/]€G\Gp @

//Q fRYdz //Q o Y gp(Pij) VRVY VRN dat
[

'L',j]GGD

- // w S gp(Piy) RERMdz + / argn RIS,
@ hjleGo I
for all [k,[] € G\Gp.

A more comfortable way of writing this, especially from the point of view
of the implementation, is using one index only for each NURBS basis function,
establishing a linear ordering of the basis functions. This can be done by using
amap m:R — R?

m ) = [ (1m0 = || L] i | [ ).
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and whose inverse is
m_l(k,l) =k(m+1)+1.

With this notation, the Galerkin subspace becomes
span {RY (z,y), i =0,...,(n+1)(m+1)|[my (i), m2 (:)] € G\Gp},

and the rest of the model has to be changed accordingly:

Yooow // (a1 VRP'? - VRY? + ag RPIRP) da =
im()e\Gp 79

// fRYYdx — // ay Z 9 (Pw(i)) VRP - VR dx+
Q Q

ilm(i)€Gp

 imGi)eGn I'n

for all jlm (j) € G\Gp, where it is supposed that Py = P, (i),ms()-

4.3.1 Transformation of the model to the parametric space

Remark 4.6 underlines the fact that the NURBS basis functions have to be
defined in the physical space, and not in the parametric space (the same situation
of the one-dimensional case). This makes it difficult to evaluate the integrals as a
definition of such functions is not simple. This is the same difficulty encountered
when trying to define the shape functions in FEM. The same concept applied
in the one-dimensional case can be extended to two dimensions. We would like
to use the NURBS basis functions defined in the parametric space as shape
functions in the physical space.

Transformation of the functions to the parametric space Functions can
be transformed to the parametric space by composing them with the NURBS

geometrical map & (€) = [#1 (€), %2 (€)]":

Transformation of derivatives to the parametric space The transfor-
mation of the derivatives can be found using the chain rule:

ORM?  ORPI Dy ORI Do

¢ &) = I |aaie 3 &)+ oy peate) 3 (&),
ORP* . ORI 07 ORP 0%

n &)=, . 57(5) By |oaie) 87(5)-
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The result can be written in matrix form so that the Jacobian matrix can be
recognized:

ORI iy Oy ORI - [ OB
o | _| o 9 p) _(Pz 9
oo | = | 3 | | ot |~ () | o
on on  On dy dy

Dz/p¢ is the Jacobian matrix of the geometric map. The searched result can be
obtained by inverting the Jacobian matrix, and can be used in the computation
of the other needed gradient

Dz

VR (@) = (DS) CvRe).

Transformation of the integrals to the parametric space Using the
substitution theorem it is possible to transform the integrals to the parametric
space. The procedure leads to the result

/[ @ ((aVRY?-VRY) () + (aoRPIRY?) (2)) da =

i Dz o pP:q Dx - PDq ~ DD, PP
//QJ@ <<a1 (Di) VR, ) <<Dz) VR ) +ag Ry RY >d£,

and
//~ Ji’fR?’qdm - //~ Jzao Z 90 (Puw) Rf’qéé”qdam—
. O im{ecn
-\ -T T
Dz Dx -
T i — Pd . ftid P54
_//QJmml Z 90 (Pwm(iy) <<D£) VR; ) ((Dﬁ) VR )dm+
ilm(i)eGp

—|—/ algNRg’qu.
I'n
The line integral can be transformed by using another parameterize function
x(t)=(1—-1t) A1 +tAs.
The line integral can be written as
1
ox (t)
/ (algNRg’q) () dx :/ ((algNRg’q) ox (1)) - Hat dt,
Tn 0

but it is immediate to see we don’t now the definition of R} (z). To determine
it, it would be necessary to compute the inverse of the map . We would like,
instead, to integrate using R? (§):

0z (x (1))

| ot (maniy?) @ = | (sman ) @)

|
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where ¢ is a function which takes into account the change of geometry. By using
the chain rule we derive

oz (x (1)) _ D& dx
ot~ De X g
We can then impose
1 o 02 (X (0) |, _
/0 (¢019NRJ» ) (Z (x(@)) - ‘ &H dt =

1
Ox (t
/ ((argn RYT) o x (1)) - H&E)H “
0
to derive that the integral can be written

Dz

9
/o1 (@an ) (e(t)- 175((;;((’2)31(
o

dt =
| (@) (e (0 Hffg 0 0) o \dt.

This obviously assumes the Neumann boundary is transformed to a segment in
the parametric space: it is possible to split this integral in more than one pa-
rameterized one-dimensional integrals when more segments are to be computed.

4.4 Approximation representing geometries and
solution fields

As already pointed in 4.1.3, IGA is based on the same data produced in the
design process, therefore the geometrical domain is not approximated, but it is
ezxact. For instance, if degree 4 NURBS’s are used in the CAD model, then the
computational domain used in IGA has degree 4. In classical FEM instead, the
geometrical domain is approximated using piecewise-polynomials, of degree 1
typically.

There is however a major difference in the CAD representation and the rep-
resentation needed in IGA: usually, in a CAD representation, one is interested
only in showing the boundaries of the elements, so that only the skin of the do-
main is represented. For instance, when representing a three-dimensional solid,
three-dimensional surfaces may be sufficient. In IGA, instead, we need to com-
pute solution fields, thus the whole computational domain has to be represented.
Boundary surfaces are not sufficient when analyzing a three-dimensional solid.
Unfortunately, this is not a trivial task: representing three-dimensional solids
is far more difficult than representing only their skin (see [1]). Let’s take for
instance the solid of Figure 4.5: related data of Table 4.2 prove this is not a
solid, but just a surface, and, from a geometrical representation point of view,
there would be no benefit in modelling as a trivariate solid. For IGA instead
this is not true.
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Figure 4.5: Ring plotted using Algorithm 3.9 with B-splines, using data in Table
4.2.

[ i ] P \ Pio \ P \ P4 \ P;s |

1] 5,0-1" | [6,0,—1]" [6,0,0]" [6,0,1]7 5,0,1]"

2 | [55-1" | [6,6,—1]" [6,6,0]" [6,6,1]" 5,5,1]"

31 o, 5 —1]T [0, 6, —1]T [0,6,0]" 0,6,1]" [0 5,17

4 | [-5,5,—-1]" | [-6,86, —1] [-6,6,0" | [-6,6,1]" | [-5,5,1]"

5 | [-5,0,—-1]" | [-6,0,—1]" | [-6,0,0]" | [-6 ,,1]T [-5,0,1]"
6 | [-5,—5,— ] [—6,—6,—1]"] [-6,—6,0]" | [-6,—6,1]" | [-5,—5,1]"
7 | 70,—5,—1]" | [0,—6,=1]" | o, —6,0]T 0,—6,117 | [0,-5,1]"

8 | [5,—5,—-1" | [6,-6,—1]" | [6,—-6,0]" | [6,—6,1]" | [5,—5,1]"

9 | [5,0,-1" | [6,0,—1]" [6,0,0]" [6,0,1]" 5,0,1]7

Table 4.2: Data for ring of Figure 4.5 (continues to Table 4.3).
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[ ] Pis \ P \ Pis \ Pio ‘

1 [4,0,1]" [4,0,0]" [4,0,—1]" [5,0,—1]"

2 [4,4,1]" [4,4,0]" [4,4,-1]" 5,5, —1]"

3 [0,4,1]" [0,4,0]" (0,4, _1]T 0,5, —1]"

4 [—4,4,1]" [—4,4,0]" [—4,4,—1]" [—5,5 —1)"

5 [—4 ,1]T [—4,0,0]" = 4 o —1]T [—5,0,1]7

6 [— 4, —4, 17 [—4,—4,0]" [—4, 4, —17 [-5,—5, —1]"
7 [0,-4,1]" 0, —4,0]" [0,—4,—1]" [0,—5,—1]"

8 [4,—4,1]" [4,—4,0]" [4, —4, 17 5,—5,—1]"

9 [4,0,1] [4,0,0]" [4,0,—1]" 5,0, —1]"

Table 4.3: Data for ring of Figure 4.5 (continues from 4.2).

According to the isoparametric paradigm, solution fields are also represented
using the same basis functions used in the representation of the geometry (i.e.
CAD basis functions). For a two-dimensional problem we have:

m

up, (&, 1) ZZ 1) Wi, (4.7)

1=0 j=0

whereas for a three-dimensional problem we have

n m l
n (6, ) =D D N NP (&) N (1) NY (C) Wi (4.8)

1=0 j=0 k=0

These ways of expressing the approximated solution are similar to that of
FEM of Equation 2.7. We are using B-spline basis functions as they are more
simple to manage, but NURBS and T-spline basis functions could be used as
well, and they turn out to have some other interesting features. There are
some differences between Lagrange interpolating polynomials and B-spline basis
functions:

e B-spline basis functions are always positive;
e continuity along edges is not always C° (this will be used in 4.6);

e for seven distinct knots, eight B-spline basis functions are defined, seven
Lagrange interpolating polynomials are defined over seven nodes;

e according to the properties of B-spline and NURBS basis functions, only
the first and the last basis functions have unity value, whereas this is not
the case for Lagrange interpolation for which the delta conditions require
unity value over each node. This result in a very important concept: B-
splines doesn’t interpolate, in general, the control points (the DOFs).

Remark 4.7. The last concept leads to a completely different interpretation
of the meaning of the DOFs: according to Theorem 2.24 the value of a DOF
was the value of the exact solution at a node in FEM. In IGA this is not true
anymore: it is not possible to know the solution value at a control point P; ;

University of Padua Faculty of Engineering




134 CHAPTER 4. ISOGEOMETRIC ANALYSIS

3 ‘
251 1
2 i
150 8
> 1+ -
05F 8
of i
—05F 8
-1 1 1 1 1 1 1 1
1 2 3 4 5 6 7
X
(b)
3 ‘
25F 1
2 i
151 1
>~ 1 i
05F 1
of i
-05F 1
-1 1 1 1 1 1 1 1
1 2 3 4 5 6 7

Figure 4.6: Comparison of (a) Lagrange polynomials interpolating 5, 6 and 6
points and (b) B-splines approximating the same points, taking those as control
points.

or at a given knot (&;,n;) by considering only the DOF @, ;. The estimation of
the solution value at a given point of the physical space requires Equation (4.7)
or (4.8).

On the basis of Remark 4.7, a different behavior of typical finite elements func-
tions and of CAD technologies has to be pointed out: typical finite elements
functions are built to interpolate the DOFs, B-splines, NURBS’s and T-splines,
instead, don’t interpolate DOFs in IGA. Unfortunately, it is well known that
interpolating polynomials oscillate in attempting to fit discontinuous data and
that increasing the degree of the polynomial, the amplitude of the oscillations
increases as well: this is called Runge’s phenomenon (see 2.3.4.2). When the
points to be interpolated are used as control points instead, splines are able to
approximate! more smoothly (see Figure 4.6). This comes from the variation
diminishing property of B-splines and NURBS formulated in 3.4.4 and 3.5.4.
This is very useful in case of sharp layers.

1Splines can both approximate and interpolate points more smoothly. In the case of IGA,
interpolation is not needed as control points doesn’t retain exact values like DOFs in FEM.
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4.5 Refinements

As already exposed in 3.4.1 it is possible to refine the process to obtain values
whose distance from the exact solution is smaller. Isogeometric Analysis dif-
fers from the Finite Element Method, as the coarsest mesh already stores all
the information of the geometrical shape of the domain. Therefore, subsequent
refinements don’t need to communicate with the CAD data in any way. The re-
finement techniques described in 2.10 have corresponding refinement techniques
in Isogeometric analysis, and a new alternative has been developed as well.

4.5.1 Knot insertion (h-refinement)

Considering the general form of a NURBS in (3.18) and the knot vector = =
{&0,&1,- -, &m}, knot insertion is the problem of inserting the knot & € [¢x, €xt1)
in Z. The new knot vector can be rewritten with the following notation:

E={C=C0, & =& Eha1 =& ka2 = Ehgtr - Ema1 = Em )

The new NURBS is now expressed with the form

n+1
—~w N7 Wi
C (&)= 7 (&) P
i=0
where P, indicates the new ‘" weighted control point, which needs to be
determined.

Knot insertion doesn’t change the curve geometrically nor parametrically
(see Figure 4.7), but only adds elements to the solution space. Indeed, if Cz
is the vector space which contains all the curves representable using the knot
vector = and Cz is the vector space defined on Z, then C= C Cxs.

The computation of the new 15;1” ’s can be computed solving the linear system
of equations

n+1

Zsz(g)P?l = ZNZ (@Pfﬁ ngoa--wfn-i-l-
i=0 =0

However, a better way of determining the new control points is available as
it can be shown that

1, 1<k—p
P = PP + (1 —a;) Py, o = L8 g pri<i<k |
Citp —&i
0, i>k+1
SO
P, i<k—p
Hw; £-¢& e S .
pP'=q —— P+ P k-p+1<i<k
Sitp — & Sitp — & !
P, i>k+1
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Figure 4.7: Example of knot insertion where two new knots 0.3 and 0.6 have
been added to the initial knot vector.

Example 4.8. As an example, in Figure 4.7 the same circle of Example 3.16 is
drawn with two new knots of values 0.6 and 0.3. As it can be seen, the resulting
curve is not different from the initial, whereas both the control points and the
knot vectors are different.

An efficient algorithm to perform knot insertion on a NURBS (or a B-spline)
curve is reported in Algorithm 4.2.

Example 4.9. As an example, in Figure 4.8 the same surface of Example 3.17
is drawn with two new knots of values 0.7 and 0.3 in the £ direction and three
new knots of values 0.7, 0.5 and 0.3 in the 7 direction. As it can be seen, the
resulting surface is not different from the initial, whereas both the control net
and the knot vectors are different.

An efficient algorithm to perform knot insertion on a NURBS (or a B-spline)
surface is reported in Algorithm 4.3.

h-refinement turns out to be particularly important when T-splines are used
in Isogeometric Analysis: T-junctions allows for the insertion of control points
in specific areas where the analysis needs refinement. This local refinement
capability makes T-splines interesting both for the design and for the analysis
phases.

4.5.2 Degree elevation (p-refinement)

Considering the general form of a p*"-degree NURBS curve C, (§) in (3.18)
defined on a knot vector =, the degree elevation is the problem of computing
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Algorithm 4.2 Knot insertion algorithm for curves.

barxzi has currently multiplicity s.
Input:
nP: defined accordingly to the knot wvector Xi;
p: degree of the initial curve;
Xi: initial knot wvector;
Pw: initial weighted control points;
barzi: value of the knot to be inserted;

s: tnitial multiplicity of the knot;
r: multiplicity of the knot in the mnew curve.
Output:
nBarP: new wvalue of n defined on the new knot wvector;
barXi: new knot wvector;
barPw: mew weighted control points.

NN

function [nBarP, barXi, barPw]| = curveKnotIns(nP, p, Xi, Pw,

mP = nP4+p+1;
nBarP = nP4r;

% Load the new knot wector.
barXi(1l:k+1) = Xi(1:k+1);
barXi(k+1+1:ktr+1) = barxi;
barXi(k+1+4r+1mPtr+1) = Xi(k+14+1mP+1);

% Save wunaltered control points.

barPw (1:k—p+1, :) = Pw(l:k—p+1, :);

barPw (k—s+r+1:nP4r+1, :) = Pw(k—s+1:nP+1, :);
Rw(1l:p—s+1, :) = Pw(k—p+1l:k—s+1, :);

% Insert the knot r times.
for j = 1:r

L = k=ptij;
for i = 0:p—j—s
alpha = (barxi—Xi(L+i+1))./(Xi(i+k+14+1)—Xi(L+i+1));
Rw(i+1, :) = alpha.*Rw(i+1+1, :)+(1—alpha).*Rw(i+1,
end

barPw(L+1, :) = Rw(1l, :);
barPw (k4r—j—s+1, :) = Rw(p—j—s+1, :);
end

% Load remaining control points.
for i = L+1:k—s—1

barPw(i+1, :) = Rw(i—-L+1, :);
end

curveKnotIns created a new NURBS curve from an exzisting one
new knot barzi is inserted in [xzi k, xzi_ {k+1}) with multiplicity r,

in which a
whera

k: index of the knot span where the knot has to be inserted;

barxi ,

)5

k, s
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Algorithm 4.3 Knot insertion algorithm for surfaces (continues to Algorithm

4.4).

function [nBarP, barXi, mBarP, barEta, barPw]| =...
surfKnotIns (nP, p, Xi, mP, q, Eta, Pw, dir, knot, k, s, r)

% Rearrange control points.

Pw = permute(Pw, [1, 3, 2]);

% Case of imsertion in the zi direction.
if dir =— 0
% Modify the knot wectors parameters.
nBarP = nP+r;
mBarP = mP;
% Load the mew knot wvector in zi direction.
barXi(1l:k+1) = Xi(1l:k+1);
barXi(k+1+1:k+r+1) = knot;
barXi (k+1+4r-+1:nP+p+l4+r+1) = Xi(k+1+4+1:mP4p+1-+1);

% Simply copy the other direction.
barEta = Eta(l:end);

% Compute the alphas.
for j = 1:r

L = k—p+j;

for i = 0:p—j—s

alpha (141, j+1) = (knot—Xi(Lti+1))./(Xi(itkt1+1)—Xi(Ltif1));

end
end

% For each row...
for row = 0:mP
% Save unaltered control points.

for i = 0:k—p, barPw(i+1, :, row+1) = Pw(i+1, :, row+1); end;

for i = k—s:nP, barPw(i+r+1, :, row+1) = Pw(i+1, :, row+1); end;

% Load auziliary control points.
for i = 0:p—s, Rw(i+1, :) = Pw(k—pt+i+1l, :, row+1); end;
% Insert the knot r times.
for j = 1:r
L = k-p+j;
for i = 0:p—j—s
Rw(i+1, :) = alpha(i+1, j+1).*Rw(i+4+14+1, :)+...

(I—alpha(i+1, j+1)).*Rw(i+1,

end
barPw(L+1, :, row+1) = Rw(0+1, :);
barPw (ktr—j—s+1, :, row+1) = Rw(p—j—s+1, :);
end
% Load the remaining control points.
for i = L+1:k—s—1, barPw(i+1, :, row+1) = Rw(i—-L+1, :);

end
% (continues ). ..

)5
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Algorithm 4.4 Knot insertion algorithm for surfaces (continues from Algorithm

4.3).

% ...(continues)
else
% Modify the knot wectors parameters.
nBarP = nP;
mBarP = mP+r;
% Load the mew knot wvector in zi direction.
barEta (1:k+1) = Eta(1:k+1);
barEta (k+1+1:k+r+1) = knot;
barEta (k+1+r+1:mP+q+1+r+1) = Eta(k+1+4+1mPt+q+1+1);

% Simply copy the other direction.
barXi = Xi(l:end);

% Compute the alphas.
for j = 1:r

L = k—q+j;

for i = 0:q—j—s

alpha(i+1, j+1) = (knot—Eta(L+i+1))./(Eta(it+k+1+1)—Eta(L+i+1))

end
end

% For each row...
for row = 0:nP
% Save unaltered control points.

for i = 0:k—q, barPw(row+1, :, i+1) = Pw(row+1, :, i+1); end;
for i = k—s:mP, barPw(row+1, :, i+r+1) = Pw(row+1, :, i+1); end;
% Load auziliary control points.
for i = 0:q—s, Rw(i+1, :) = Pw(row+1, :, k—q+i+1); end;
% Insert the knot r times.
for j = 1:r

L = k—qtj;

for i = 0:q—j—s
Rw(i+1, :) = alpha(i+1, j+1).«xRw(i+1+1, :)+

(1—alpha(i+1, j+1)).*Rw(i+1,

end
barPw(row+1, :, L+1) = Rw(0+1, :);
barPw(row+1, :, ktr—j—s+1) = Rw(gq—j—s+1, :);
end
% Load the remaining control points.
for i = L+1:k—s—1, barPw(row+1, :, i+1) = Rw(i—-L+1, :);

end
end

barPw = permute (barPw, [1, 3, 2]);

)
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Figure 4.8: Example of knot insertion in a square plate with a hole.

the new control points P} and the new knot vector = such that

Cy (6 =Cpu (O = N ()P
=0

This way the curves continue to be the same geometrically and parametrically,
but CZJH belongs to a higher dimensional space.

Degree elevating a curve requires to compute the new knot vector and the
new control points 131"0 The continuity of the curve has to be preserved, and
this is done increasing by one the multiplicity of each knot of

—_
—
—

= a>"‘7a7§p+17"‘7§p+13"'7§’na"'7§nub7"'7b )
—_——— —— — —— ——

p+1 Mpt1 My p+1

getting the vector

[1]i

= av"'7aafp+17"~7£p+11"'7§n7"'7§n7b7"'7b )
—_—— —— — —— ——

p+2 mpy1+1 mnp+1 p+2

where

El=p+n+2, |E=p+n+2+(n+2).
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The basic (and inefficient) approach to compute the P;*’s requires solving
the linear system of equations

ZNiZH’l (E)PZZZsz(E)P“ 6:507"'75717

=0 =0

where the v;’s are to be chosen appropriately.

An alternative (and more efficient) algorithm is proposed in [24]: the idea
is to extract Bézier curves segments from the NURBS, degree elevate them and
to remove knots separating the curves to obtain the new NURBS curve.

4.5.3 {hp,ph}-refinement

As in classical FEM, it is possible to use both A-refinement and p-refinement
during a single refinement process. It has been shown that this kind of re-
finement technique has many interesting advantages. In Isogeometric Analysis,
hp-refinement can be performed as well by performing first not insertion and
then degree elevating.

A new refinement method can be analyzed as knot insertion and degree
elevation do not commute. This means it is possible to obtain different results
by degree elevating the curve and then by inserting the new knot. ph-refinement
is a different strategy of degree elevation technique which is able to achieve the
same results of p-refinement, keeping the number of basis functions considerably
lower.

4.6 Numerical quadrature for IGA

As already stated in Section 2.7, a relevant part of the computational time
in FEM is related to the numerical integrations. In Subsections 2.4.4.2 and
2.3.2.2 we divided the integrals on the domains defined during the meshing
phase of FEM. This technique was very practical in the process of assembling the
matrices. A similar technique could be implemented in Isogeometric Analysis
where the NURBS-based model is decomposed into a finite number of patches,
and again decomposed into a grid of rectangular (in two dimensions) or paral-
lelepipedal (in three dimensions) “elements”. Again, the most obvious technique
of numerical integration is the Gauss integration. The first document to ana-
lyze this problem is [19]. The following analysis will explain that this behavior
could be made more efficient in Isogeometric Analysis, where the shape functions
posses different continuity properties than FEM shape functions.

Both in Isogeometric Analysis and in FEM, integration has to be done over
product of functions and gradients of the same functions on the parametric
space and on the reference domain respectively. In Isogeometric Analysis in
particular, these types of integrals are commonly computed (these reported
refers to two-dimensional problems):

//[o 2 ¢ (&) Ry (&) Ry (€) dE, (19)
//[O 2 o (&) VR (&) VR (§) dE, (4.10)
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//[0 o OO VR @ Ry @) de, (411)

//[0 o OO VR (@) BT (€) B (€) de. (4.12)

In Equations from (4.16) to (4.19), the function ¢ (§) is a function which takes
into account both the change of geometry (Substitution theorem) and the co-
efficients of the PDE, the R; ;’s are the NURBS basis functions defined on the
correct knot vectors and weights.

4.6.1 Numerical quadrature of C*-continuous functions

In Chapter 2, we defined our basis with shape functions defined on the domain of
the problem: these functions were piecewise-polynomials defined on the elements
of the mesh. These piecewise-polynomials had continuity CT°° on the elements
interior, but were only C° on the boundaries of the elements (only continuous).
Let’s consider two elements, (—1,0) and (0,1), where we define a quadratic
piecewise-polynomial basis with C° continuity on the boundaries. This basis
can be analytically expressed with the six functions:

p1(§) = 1,V¢e[-1,1],
- -1, V¢e[-1,0)
P2 (5) - {17 Vf c (0, 1] )
©3 (é-) = ga V§ € [_17 1] )
-§, Ve [-1,0)
¢4 (§) {57 vee (0,1]
ps(§) = €. vVel[-1,1],
) =€, veel-1,0)
¥6 (g) - {62, Vé. c (07 1] .

Supposing no continuity in 0, if we want to be able to integrate exactly any
@ € Sy—1 =span{y;,i =1,...,6}, we need to repeat the process of Subsection
2.7.1 for the calculation of the weights and of the integration points, using the
elements in P!,

Notation 4.10. Notice that the notation of Chapter 3 of SE is replaced by S,  or
Spk (M (M)) as, in this section it is more important to remark the continuity
than the specific knot vector and the set over which the basis functions are
defined.

Alternatively, we can integrate separately the two intervals using a two-point
Gauss rule in each sub interval, for a total number of four integration points.

Supposing, instead, continuity C° in 0, we can remove s (£) from the basis
of Sy 1 getting a basis with 5 functions. With 5 functions, only 3 integration
points and weights are obtained from the system. Similarly, for C? continuity,
w4 (&) and g (€) have to be removed from the basis, and only 3 functions are
used to create the system, which provides 2 integration points and 2 weights
only. So, the the resulting concept is that increasing the continuity reduces
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’ k \peven\podd‘
-1 [ p+2 [ p+1
even p+1—§

odd p+1—%

Table 4.4: Number of integration points necessary for the exact evaluation of
J2 e (&) de, with ¢ € S,y and k € ([-1,p — 1] C N).

the number of integration points necessary to exact integrate the piecewise-
polynomial. Table 4.4 summarizes these results.

All this suggests that the FEM approach to integration is not necessarily
good in Isogeometric analysis as well. In this case, the integration of the spans
singularly, can result in requiring more function evaluations than an integration
over more spans.

Let’s now consider a more general case where M, (R) is a uniform mesh of
R with each element K,, € M), (R) have length h. Functions in S, _1 (M}, (R))
can be evaluated with common Gauss integration on each element using ng,,
Gauss integration points, where ng,, = p+1/2 when p is odd and ng,, = p+2/2
when p is even. The exact integration can be expressed with

NKm

/R p©de= S hue, o (Exen ). (4.13)

Kmth(R) =1

This integration is used in FEM when integrating on the different elements as
functions are in S, ¢, which means we need, for the case of Table 4.4, p+1—Fk/2 =
p+1 integration points. In Isogeometric Analysis instead, we typically have some
kind of higher regularity between elements. When there is no repeated knot in
the knot vector, the basis function is C?~!, and so belongs to S, ,—1 (M}, (R)).
In this particular case it can be shown that only one integration point every two
elements is sufficient to get an exact integration. When p is odd the points are
placed in the middle of the elements, when p is even, instead, the integration
points are placed over the knots. The integration of a function ¢ € Sp 1 can
then be written:
/ @ (§)ds = Z hwnalt-point (&)
R i€Z
This equation can be now used with a B-spline basis function N} (£) € Spp—1 (M, (R)):

‘/]RNJP (g) df = Z hwhalf—pointhp (gz)

i€z
Noticing that whalt.point is independent on p and ¢, it is possible to express it as

Je N7 (€) dg

Whalf-point = 7T ~~ ~7p /& 1> 4.14
it = S NP6 e

which can be further modified considering the translation property N ]’»’ &) =
N{ (€ — jh) and the symmetry property N§ () = NJ ((p+ 1) h —¢&):
_ _JeNo(©)dE
Whalf-point = T ~~  ~7D 7\
h ez No (&)
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where NJ (€) can be evaluated with the recursive definition

NS(©) = {1’ e

. K
0, otherwise

N7 (g) = SN (£)+(p+;—£)N€‘ -1

The numerator of (4.14) can be rewritten integrating over its support (0, (p + 1) h):

(p+1)h P (i+1)h
/RNé’@):/O Nﬁ(s)dszz/ N? (&) de.

i—0 Jih

Again, as the support of N]’-7 (&) is (jh,(j +p+1)h), the integration can be
done over shifted version of the basis functions

P p(i+1)h h P
P _ P
Z/ih N (£)d€f/0 ;N_j@)ds

=0

which, by the partition of unity property, can be simplified to

h P h
14 — —
/sz_:ONj(f)df_/o 1d¢ = h.

The denominator can be simplified as well: first of all the symmetry property
allows to rewrite the summation

S ONP(&) = ! (ZN&’(&)+ZN£<<p+1)h—@)),

; 2\ 4 ;
1€Z 1€L 1€EZL
1
JEZ
_ 1
= 3
This means Whalt-point = 2, and (4.14) becomes
[ o5 = S 2he (6. Ve (O € Sppr My R (@13
i€l

(4.15) was first derived in [19] and named half-point rule. It has the same compu-
tational cost per degree-of-freedom as Gauss integration of Equation (4.13) for
Sp,—1 (M, (R)), which is one function evaluation every two degrees-of-freedom.
The computational cost of element-wise Gauss integration would be instead
much higher. Table 4.5 summarizes the results.

4.6.2 Numerical quadrature by one-dimensional integra-
tions

We can approximate these integrals considering that the function ¢ (£) and
the denominators of the NURBS basis functions change slowly, and the contri-
butions to the integrals can often be considered constant. This result in the
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’ Space \ Gauss rule (4.13) \ Half-point rule (4.15) ‘
Spp—1 (M (R)), p odd P/ 7
Spp—1 (My (R)), p even P2/ i

Table 4.5: Number of integration points (function evaluations) for Gauss in-
tegration and half-point rule to exactly integrate element-wisely a function in

Sp,p* 1 (Mh (R))

possibility of considering the integrals from (4.16) to (4.19) with the forms

// NP (€) NEY (€) d, (4.16)

[0,1)2

J/RLEIOMEIOLS (417)
// VN”q &) NP (&) dE, (4.18)
[0,1] '

/ IO NS (O N () e (4.19)

Let’s consider the case of tensor-product piecewise-quadratic C' basis func-
tions: the integral of Equation (4.17), for instance, is

/[0 1]? VN2 2 VN’ff (£) d&.

The two gradients can be written as

, _ 2 aNE(f) 2 aNJZ(U)
vzv?,f(s)—[zvj () = N (O =5, ]

vt (O = N2 ) P g o O

and the integral, by substitution, is

2 5, ON? (§) ONE () ) o . ONZ (1) ONZ ()
//[012<Nj (n) N/ (n) o€ 55 +NZ(E) N2 (e —-L o o )dndg.

The reduction theorem yields

)dn / azv? azv? (g) ONEE) 4o
0 \—f—/

20

1 2
/N2 €)NE (¢ dg/ ON; aNl ( )dn. (4.20)

S2.0
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’ Basis functions \ Force \ Stiffness \ Linear adv. \ Nonlinear adv. ‘
p=1,¢=1,C%| S0 | So.-1, S1,-1,520 | S1,-1, S20 Sa.—1, S3,0
p=2,q=2,Ct| S 82,0, S3,0,S4,1 83,0, Sa Ss.0, S6,1

Table 4.6: Sets to which the terms to be integrated belong while integrating
piecewise-linear continuous basis functions and piecewise-quadratic C'! basis
functions. The force vector, stiffness matrix, linear advection and nonlinear
advection terms are analyzed.

From these integrals it is clear that integrals of the form of Equation (4.17) can
be evaluated exactly integrating exactly in one dimension functions in S4; and
functions in S 9. The same reasoning can be done for the other integrals, and
the results are summarized in Table 4.6.

The considerations reported so far suggest that it would be more efficient to
integrate over more than one element. In FEM, the continuity is only C?, so no
benefit would be gained integrating on more elements. Due to higher continuity,
integration of B-spline basis functions is more efficient when is done over more
elements. This is the reason why macro-elements are defined: macro-elements
are made up of elements of the same size (within the same macro-element) and
integrations are evaluated over them. Equation (4.15) can be used and adapted
to macro-elements M,,:

MMy,

// (&) d¢ = Z Huwnp,, i¢ (€n,,i) » Vo € a basis of Sg i (Mp (Mp,)) .
Mo i=1

This equation leads again to a system of equations which has to be solved for
the 2ny7,, unknowns wyy,, ; and &y, ;. If p is the integrand function order,
r = p — k is the inter-element regularity and ne; is the number of elements in
M,, then we have that (see Equation (3.4))

Ndoy = (p+1) ner—(p—r+1) (ne — 1)
is the number of degrees-of-freedom and

Ndo
nar, = |75

An algorithm is proposed in Algorithm 4.5, the algorithm for the computa-
tion of the system of nonlinear equations is reported in Algorithm 4.6. Results
of these algorithms are reported in Tables (4.7)-(4.11).

4.6.3 Numerical quadrature by two-dimensional integra-
tions

The numerical quadrature studied so far requires that the integrals can be de-
composed in one-dimensional integrals using the reduction theorem. However,
this is possible only when we assume the function ¢ (£) is constant. This is
not frequent to happen, even when B-spline basis functions are used instead of
NURBS basis functions: the determinant of the Jacobian matrix and the Jaco-
bian matrix itself are not constant on the integration domain, and are as well
not separable in (4.20).
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Algorithm 4.5 Algorithm for the computation of the Gauss integration points
and weights for “exactly” integrate functions in S, x ([0, 1]).

computeGaussPoints Weights computes the Gauss integration points and
weigths to "exzactly" integrate B-spline basis functions of degree at
most p on a number nel of elements all of the same length where the
continuity of the functions is C°k. The domain considere is (0,1).
Input:
p: max degree of the functions to integrate "exactly";
nel: number of elements (elements are considered all of the same
length .
k: continuity is C k.
Output:
wzi: wzi[i], is an integration point or a weight if i is odd or even
respectivly .
Z%function wzi = computeGaussPointsWeights(p, mnel, k)

NN KRR KRRKRK

% Definition of the knot wector (uniform).
Xi(l:p+1) = 0;
=1
for i = p+1+1l:p—k:p+l+(nel —1).x(p—k)
Xi(i:i+p—k) = 1./(nel).xj;
j=1i+L
end
Xi(p+1+(nel —1)x(p—k)+1:p+1+(nel —1)*(p—k)+1+p) = 1;
% Computation of the reduced continuity.
r = p—k;
% Computation of the number of degrees—of—freedom.
ndof = (p+1)*nel—(p—r+1)*(nel —1);
% computation of the number of integration points to wuse.
nquad = ceil(ndof/2);
% Computation of the number of knots minus one.
m = length(Xi)—1;

% Integration of the basis functions.
% Iteration on basis functions.
int (mp) = 0;
for i = 0:m—p-—1
% Definition of the function.
f = @Q(x)basisFun(p, m, Xi, i, x);
% Evaluation of the integral.
int (i+1) = quad(f, 0, 1, le—15);
end

% Definition of the monlinear system.
F = @Q(x)gaussEquations(p, m, Xi, int, nquad, x);

% Setting the options for the evaluation of the nonlinear system.
options = optimset(’TolX’, le—6, 'TolFun’, le—6,...

"MaxFunEvals’, 1e7, ’'MaxIter’, 1e7, ’Display’, ’on’);
% Solving the monlinear system.
%
% ezitflag < 0 indicates the procedure has failed for some reason.
exitflag = —2;

% Initial guess of solution .

x 0(2.xnquad) = 0;

% Iterate till the system is evaluated acceptably.
while exitflag < 0

% Define the initial guess (I want the components to be < 1 and >= 0).

for i = 1:2.xnquad
x 0(i) = rem(rand(1, 1), Xi(end)—Xi(1)+1) + Xi(1);

end

% Solution of the monlinear system.

[wxi, fval, exitflag , output, jacobian] = fsolve(F, x_0, options);
end
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Algorithm 4.6 Algorithm for the computation of the value of each equation in
the nonlinear system for a possible solution .

function

|[F] = gaussEquations(p, m, Xi,

int , nquad,

x)

% Creation of the matriz (preallocation ).
F(m-p—1+1) = 0;

% Calculation of the number of the

calculation of single

control

basis functions.

F(j) = F(j)+ax(2.x(k—1)+1+1).%...

Xi,

calculation of all

where the

J—1, @ (2% (k=1)+1));

the mnonvanishing functions

x(2.%(k—=1)4+1) < 0, break; end;

knot span the

x (2. (k=1)+1), p,
(only one member).

equations

candidate integrat

P, x(2.x(k=1)+1), Xi);
the mnonvanishing B—spline

basis

Xi);

F(i—j+1) = F(i—j+1)+x(2.%(k=1)+1+1).«N(p—j+1);

n = mp-—1;
% Itarations wusing
% for j = 1:m-p—1+1
% for k = 1:nquad
%
% basisFun(p, m,
% end
% end
% Iterations wusing
% call.
for k = 1l:nquad
% I don’t comsider solutions
% the integration domain.
if x (2.5 (k—1)+1) >= 1
% Computation of the
% belongs to.
i = findSpan(n,
% Computing all
% integration point.
N = basisFuns (i,
% FEwvaluation of the
for j = O:p
end
end

% Add a symmetry condition

if m{l-p—1 < 2xnquad

F(2xnquad)

end

% Subtract the

"exact"

if meeded.

integrals.

integration point

functions

points minus one.

for each

is outside

ion point

in the

x(ceil (nquad./2)+1) + x(nquad—ceil (nquad./2)+1+1) — 1;

for i = 1:length(int)
F(i) = F(i)—int(i);

end
€0.1).0 2 spans 3 spans 1 spans 5 spans
€0,1).1 0.833333333333367 0.948645469027478 0.904711817893507 0.457777823250046
€0,1).2 0.500000000000000 0.717511861375525 0.313143439853511 0.882088086363297
€0,1).3 0.166666664870387 0.111111111111113 0.500000014840651 0.691228286634788
£[OY1>,4 - 0.407407407407409 0.683909215048782 0.691229590640683
€0,1).5 E E 0.322471174843453 0.258073457384546
€0,1),6 B - B 0.066273731840079
wio.1). 2 spans 3 spans 4 spans 5 spans
wio,1),1| 0-374999999999985 0.146083289946954 0.229417413380509 0.202575467696076
w0,1),2 0.250000004047672 0.282488138624475 0.496211733755255 0.270092166688278
wio.1),3| 0-374999995052344 0.250000000000001 0.124127514678909 5131.266376438610678
w[0,1),4 B 0.321428571428575 0.246294438348830 -

5131.032497567794053

w[0,1),5 - - -0.197591080045694 0.255992610234059
w[0.1).6 B B E 0.170849756282850

Table 4.7: Gauss points and weights for “exact” quadrature in [0, 1) of functions
S2,0 ([0,1)).
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€0.1).1 2 spans 3 spans 1 spans 5 spans
&[071),1 0.166084941241376 0.923383257935759 0.320339951871245 0.402547023824487
6[011)12 0.579519205297671 0.076616742065828 0.704204902052694 0.174032889157233
5[0,1),3 0.907388611933888 0.500000000000000 0.510975818880721 0.630049724739978
&[071)Y4 0.166090495942244 0.709945075524140 0.906846799509926 0.045968878372119
5[011)15 - 0.290054924497223 0.240717961537833 0.926794576332642
5[0,1),6 - - 0.061271036140975 0.502683509307378
5[071),7 - . 0.273706345581009 0.300003871818280
€[0.1).8 - - B 0.773511908662025
wo.1).4 2 spans 3 spans 1 spans 5 spans
wio,1),1 - 0.181434731778163 0.439077001607745 0.071050245298913

606.535132106401875
wo,1),2 0.405509975080273 0.181434731855367 0.203870250601339 0.124474011028752
w[0,1),3 0.240811371644811 0.222213207940754 0.135504983576706 0.133798040564846
wo,1),4 606.895868560192753 0.207458628807443 0.184264463132512 0.108857539657346
w[0,1),5 - 0.207458628730237 0.413817312617704 0.146459106667955
w[0,1),6 - - 0.145238149943137 0.129856790925803
w[071)77 - - -0.552180405364183 0.133341211220522
wo.1).8 E B B 0.141451812505181

Table 4.8: Gauss points and weights for “exact” quadrature in [0, 1) of functions

3,0 (0, 1))

0.1).1 2 spans 3 spans 1 spans 5 spans

6[0_’1)11 0.428435167162567 0.048393309887333 0.215911159823009 0.919915886144466
5[011)12 0.428434552289109 0.177956276631099 0.937131285756656 0.674049255828765
5[0,1),3 0.121206682077936 0.500092916978055 0.215911990788857 0.080739746529892
6[071)14 0.917131596800970 0.706031373148391 0.342198509312834 0.499834550305687
E[U,l),S 0.665679754403337 0.916128622780179 0.061233362771563 0.570177698674665
s[O,l),G - 0.055906637652176 0.478517201160487 0.784021230583838
5[0,1),7 . 0.317698239158576 0.625468892856977 0.368135066512957
E[()_’l),g - - 0.779573919378795 0.784164302334527
£[0,1),0 - B 0.937125207014475 0.515578174346808
€[0,1),10 - - - 0.675040543245028
€[0,1),11 - B - 0.226399017799747
w0.1).4 2 spans 3 spans 1 spans 5 spans

w[0,1),1 -0.229998305348650 0.230709827099232 -0.362634110925567 0.139577217807637
w[p,1),2 0.500000106347717 0.159874024538251 -0.147415807665407 -0.132378555081982
w[0,1),3 0.271526702403672 0.219895327544213 0.499999835921352 0.139885118158629
w[o,1),4 0.199201237919740 0.194246212660173 0.137159375742357 0.402930948757977
w[071)75 0.252712472333265 0.185937544149411 0.136790077641194 0.149077195992203
w[0,1),6 - -0.133527737279334 0.125019289354648 -0.243538802938613
w[0,1),7 - 0.129234963447895 0.164949280922275 0.125344169690181
’W[071)78 - - 0.145583932965228 0.345828566120191
w(0,1),9 - - 0.286837477632445 -0.352955477555863
wio.1),1 - - B 0.242691125013453
w[0,1),11 - - B 0.130687525984878

Table 4.9: Gauss points and weights for “exact” quadrature in [0, 1) of functions

8470 ([07

1).
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{[0‘1%7" 2 spans 3 spans 4 spans 5 spans
£[0,1).1 0.042770562048058 0.536516567860769 0.625846047432515 0.458935495248663
5[011),2 0.390281981608041 0.944080500381908 0.518075205400184 0.550323502455676
€[0,1),3 0.502198842842684 0.175089395445756 0.030374840976267 0.105428992977702
€[0.1),4 0.674782372288326 0.652087074128506 0.957994211814058 0.389553596573982
5[0,1),5 0.194261336319405 0.408122626544791 0.233675153602255 0.186694554722707
£[0,1),6 0.211213254219571 0.407358466253176 0.233669350226360 0.940298114384035
€[0.1),7 0.917450573805243 0.040128526153241 0.957994100005439 0.622526382356290
&[0,1),8 - 0.780866504010469 0.733780277308149 0.304845457699348
€[0,1),9 - 0.175091190745680 0.132322384928325 0.024181794117765
€[0.1),10 - 0.309069571522065 0.835507061935651 0.287597884998844
€[0,1),11 - - 0.430659773138450 0.727223653119565
£[0,1),12 - E 0.430821115624636 0.550284004273494
£[0,1),13, - - 0.319133784503069 0.254221673779585
£[0,1),14 - - - 0.186742440658334
£[0,1),15 - - - 0.822296228289488
£[0,1),16 - - - 0.622525471004493
w0,1),i 2 spans 3 spans 4 spans 5 spans
w[0,1),1 0.106654746406427 0.136073617398366 0.121968600079509 0.087765889178017
w[0,1),2 0.167378453597293 0.129036791661816 0.085178388092226 0.452614993814528
wi0,1),3 0.087997596581449 0.347912881100316 0.074125732685454 0.092189860090221
w[0,1),4 0.247020407398512 0.097952287825981 0.500000001781344 0.059683766666144
w[0,1),5 0.124374267603976 -0.304512556922801 0.165203759963084 0.813297114006685
w[0,1).6 0.068711456934242 0.417147517206252 -0.084535545806424 0.109138250470302
w[0,1),7 0.191199446748913 0.098004632909778 -0.403111741632715 0.421519318769177
w[0,1),8 - 0.165391841140297 0.088598218721909 0.206058167707416
wi0,1),9 - -0.194682693842008 0.115606170373304 0.059040102106830
Wo.1),1 - 0.102715714062121 0.124015609557615 -0.179658803900306
w[0,1),11 - - -0.228374746123211 0.106427494461614
w(0,1),19 - - 0.332496327089866 -0.371468049703903
wio,1),14 - - 0.104324263315390 0.117476863076052
w[0,1),14 - - - -0.750539592908463
w(0,1),14 - - - 0.095416934612510
w[0,1),1 - - - -0.338941011896593

Table 4.10: Gauss points and weights for “exact” quadrature in [0, 1) of functions

86,0 ([07 1))

€0.1),i 2 spans 3 spans 4 spans 5 spans
€0,1),1 0.646332563472504 0.785223269956529 0.072188925973708 0.142839577504758
€0,1),2 0.353667436496891 0.097993118328453 0.416461056437632 0.400172082710462
£0,1),3 0.915998404219064 0.785210003839279 0.072189051563378 0.942251167494534
€[0,1),4 0.084001595757942 0.330380669998786 0.927811178643384 0.666894899108321
€[0,1).5 - 0.947054076363070 0.583539908145616 0.942251232038523
£[0.1).6 - 0.554407808862486 0.752693842408999 0.268055269927127
€[0,1).7 - - 0.247306319290994 0.033847598260145
£0,1),8 - - - 0.533396994066341
£[0,1),9 - - - 0.802166249576074
w[0,1),4 2 spans 3 spans 4 spans 5 spans

w[o,1),1 0.295833814064987 E 0.409401392410386 0.120959377546950

294.320525140782877

w012 0.295833814389626 0.212638937321328 0.169088088044403 0.129501619152761
w[0.1),3 0.204166185831332 204.524579768581873 -0.256628503966937 0.499999999377770
w(0.1),4 0.204166185714050 0.224144818513231 0.152773616528585 0.135185067189173
w0.1),5 - 0.131264750487560 0.169088088166493 ~0.377783860754304
w[0.1),6 - 0.223357337585522 0.169660838338642 0.132287614486551
w[0.1).7 - E 0.169662368862370 0.082280357816187
wo.1),8 - - B 0.135083611840556
w[0,1),9 - - - 0.135703312380091

Table 4.11: Gauss points and weights for “exact” quadrature in [0, 1) of functions

Sa1([0,1)).
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A solution is to perform the integrations on a two-dimensional space, instead
of computing the product of one-dimensional integrals. This requires to create
a system of equations in the form

n(E) )

"My "My,
% Ce@de= Y Yl wlfl o o) (4.21)

i=1 j=1

Vo € abasis of S7) (M, (My,)), where H is the length of the edge of the
element. Algorithm 4.7 computes the unknowns solving the nonlinear system
of Algorithm 4.9. The number of DOFs can be found in this case through
Equation (3.11).

It is clear that, using the nonlinear system of equations of Equation (4.21), it
is not possible to expect exact integrations for any function ¢ in Sp4, (My, (My,)):
this is because the points and the weights computed with Algorithms 4.7 and 4.9
didn’t take into consideration the presence of a term ¢ (£). With this method,
however, it no more necessary to consider ¢ (€) a constant: the stiffness term,
for instance, becomes

n&) (H)
Moy, ™

S5 w® ) (6VRPYRD) (€4, 5 5)

zl]l

The same exact concepts here reported can be applied to NURBS’s.

4.7 Implementation of IGA

Possible algorithms for the implementation are reported and described here.

4.7.1 Providing design model

As usual, IGA works on a model which comes directly from the design phase.
The description of the model can employ many types of CAD structures, like B-
splines, NURBS’s or even T-splines. In this phase, it is important to remember
what has been pointed out in 4.4. In our model, we can completely describe a
B-spline surface by defining:

e the degree of the B-spline basis functions (in both directions) p and g;
e the number of control points in each direction n + 1 and m + 1;

e the control points P; ; which are described in the implementation as a
three-dimensional matrix P[i, j, d] where 1 <i<n+4+1land1<j<
m + 1 indicates the indices of the point and d is the axis to which the
coordinate refers.

Once these information are defined, some functions are available to plot the
physical space. The algorithms behind these functions are reported and ex-
plained in Chapter 3.
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Algorithm 4.7 Algorithm for the computation of the weights and of the
quadrature points for the integration of a two-dimensional function ¢ €
Sy, (Mp, (M,y,)) (continues to Algorithm 4.8).

=,kH

computeGaussPoints Weights2D computes the Gauss integration points and
weigths to "exactly” integrate bivarite B-spline basis functions of
degree p in direction zi and q in direction eta at on a number nel of
uniform elements where the continuity of the functions is C°rXi in
direction zi and C"rEta in direction eta. The domain considered is
(0,1).
Input:
p: max degree of the functions to integrate "exactly" in
direction xi;
q: mazx degree of the functions to integrate "ezactly” in
direction eta;
k: number of elements in the zi direction;
l: number of elements in the eta direction;
nel: number of elements (elements are considered all of the same
length .
rXi: continuity is C°rXi in direction wi;
rEta: continuity is C rEta in direction eta.
Output:
pw: pw[i:i+4] contains, in this order, int. points on zi and eta and
weights on zi and on eta.
function pw = computeGaussPointsWeights2D (p, q, k, 1
% Definition of the knot wvectors (uniform).
Xi(l:p+1) = 0;
=1
for i = p+1+1:p—rXi:p+1+(k—1)*(p—rXi)
Xi(i:itp—rXi) = 1./(k).*j;
j=1i+L
end
Xi(p+14+(k—1)*(p—rXi)+1:p+1+(k—1)*(p—rXi)+1+p) = 1;
Eta(l:q+1) = 0;
=1
for i = q+1+1l:qg—rEta:q+14+(1 —1).x(g—rEta)
Eta(i:i+g—rEta) = 1./(1).xj;
b=+
end
Eta(q+14+(1 —1)*(p—rEta)+1:q+1+(1 —1)*(gq—rEta)+1+q) = 1;
% Computation of the number of repetition of a knot.
sXi = p—rXi;
sEta = q—rEta;
% Computation of the number of degrees—of—freedom.
ndofXi = (p+1)xk—(p—sXi+1)*(k—1);
ndofEta = (q+1)*1—(q—sEta+1)*(1—-1);
ndof = ndofXixndofEta;
% computation of the number of integration points to wuse.
nquad = ceil (ndof/2);
% Evaluation of the number of basis functions.
n = length (Xi)—p—2;
m = length (Eta)—q—2;
% (continues...)

NN LR R K

, rXi, rEta)
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Algorithm 4.8 Algorithm for the computation of the weights and of the
quadrature points for the integration of a two-dimensional function ¢ €
Sp’;kH (M, (M,,)) (continues from Algorithm 4.7).

% (...continues)
% Ezact integration of the basis functions.
%
int ((m+1)*(n+1)) = 0;
intIndex = 1;
for i = O:n
for j = 0:m
% Definition of the function.
f = @Q(x, y)basisFun(p, ntp-+1, Xi, i, x).*...
basisFun(q, mtq+1, Eta, j, y);
% Evaluation of the "ezxact" integral.
for xi_i = 1l:length(Xi)—1
for eta i = 1l:length(Eta)—1
int (intIndex) = int(intIndex)+...
dblquad (f, Xi(xi_i), Xi(xi_i+1),...
Eta(eta_ i), Eta(eta_i+1));

end
end
intIndex = intIndex-+1;
end
end

% Definition of the monlinear system.
F = @Q(x)gaussEquations2D (p, n, Xi, q, m, Eta, int, nquad, x, k, 1/k);

% Setting the options for the evaluation of the mnonlinear system.
options = optimset(’TolX’, le—3, '"TolFun’, le—3,...

"MaxFunEvals’, 1e8, ’'MaxIter’, 1e8, ’Display’, ’on’);
% Solving the monlinear system.
%
% exitflag < 0 indicates the procedure has failed for some reason.
exitflag = —2;

% Initial guess of solution.

x_0(2.%xnquad) = 0;

% Iterate till the system is evaluated acceptably.
while exitflag < 0

% Define the initial guess (I want the components to be < 1 and >= 0).

for i = 1:2%xnquad
x 0(i) = rem(rand(1, 1), Xi(end)—Xi(1)+1) + Xi(1);

end

% Solution of the nonlinear system.

[pw, fval, exitflag , output] = fsolve(F, x 0, options)
end
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Algorithm 4.9 Algorithm for the computation of the value of each equation in
the nonlinear system for a possible solution .

function F = gaussEquations2D(p, n, Xi, q, m, Eta, int, nquad, x)
% Creation of the matriz (preallocation ).
F((m+1)*(n+1)) = 0;
% Iterations wusing calculation of all the nonvanishing functions for each
% call.
for k = l:nquad
if x(4.%x(k—=1)+1) < 0 || x(4.%x(k=1)+1) > 1 |]...
x(4.x(k=1)+14+1) < 0 || x(4.x(k=1)4+1+1) > 1
F = ones (1, (m+1)x(n+1));
return;
end

% Computation of the knot span the candidate integration point
% belongs to.
xi_i = findSpan(n, p, x(4.x(k—-1)+1), Xi);
eta j = findSpan(m, q, x(4.%x(k—1)+1+1), Eta);
% Computing all the nonvanishing B—spline basis functions in the
% integration point.
Ni = basisFuns(xi_i, x(4.x(k—-1)+1), p, Xi);
Nj = basisFuns(eta_j, x(4.%x(k—1)+1+1), q, Eta);
% Evaluation of the equations (only one member).
for a = 0:p
for b = 0:q
Computation of the correct index of the current
% nmonwvanishing basis functions.
1
J

A

= xi_i—a;
= eta_j—b;
% Computation of the current linear indices in the F matriz.
FIndex = ix(mt1)+j;
F(FIndex+1) = F(FIndex+1)+...
x((k—=1)%4+2+1)*x ((k—1)*4+3+1)*Ni(p—a+1)*Nj(q—b+1);
end
end
end

% Add a symmetry condition if needed.

for i = (n+1)*x(m+1)+1:2%xnquad
if mod(i, 2) =— 0
F(i) = x(end—ceil (i/2)*3) + x(ceil(i/2)) — 1;
else
F(i) = x(end—ceil (i/2)%2) + x(ceil (i/2)+1) — 1;
end

end

% Subtract the "exact” integrals.
for i = 1:length(int)

F(i) = F(i)—int(i);
end
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e A B-spline surface defined over adequate knot vectors Xi and Eta with n+1
and m+ 1 control points and degrees p and q can be evaluated in [x1, eta]T
using the function bsplineSurfPoint(n,p,Xi,m,q,Eta,P,xi,eta).

e A NURBS surface defined over adequate knot vectors Xi and Eta with
n+ 1 and m 4+ 1 control points, degrees p and q and weights defined by a
two-dimensional matrix w can be evaluated in [xi, eta]T using the function

NURBSSurfPoint (n,p,Xi,m,q,Eta,Pw,xi,eta) where Pw are the weighted

control points.

4.7.2 Providing PDE specification and boundary condi-
tions

The problem has to be defined, comprising both the coefficients of the PDE and
the boundary conditions. This can be done by using two matrices, namely C
and D, defined as

—_

WP eT
. 1 7 b . 0, itP;;¢Tp
Cli,j]=42, if P;; €Ty, D[i,]j]= . .
) gp (Pij), if P;jelp
0, otherwise ’ ’

Neumann boundary conditions have to be applied in a weak sense. A function
gn (x) has to be defined and supplied to the algorithm and the control points
where a Neumann condition is imposed have to be selected in the array C. More-
over, for simplicity, a vector N is used to identify the edges on the parametric
space which have Neumann conditions applied. N is 1 when it identifies a Neu-
mann edge, where the first component relates to the edge with n = 1, the second
to the edge with & = 1, the third to the edge with n = 1 and the fourth to the
edge with £ = 0. A more advanced structure for the definition of the boundary
conditions may be explored however.

4.7.3 Computation of the linear system

Homogeneous and nonhomogeneous boundary conditions can be imposed di-
rectly to the control points, removing the respective equations from the system.
This is done in Algorithm 4.10, where we take advantage of the symmetry of
the stiffness matrix. The algorithms for the computation of the integrals will be
discussed in 4.7.5. Nonhomogeneous boundary conditions can be implemented
just by subtracting a term from each element of the force vector.

4.7.4 Mesh refinement

The coarsest mesh in IGA stores all the needed information, but the mesh
(formed by the knot vectors) is likely to be not sufficient. Starting from the
coarsest mesh, it is possible to h-refine the mesh by knot insertion. Assuming
for simplicity a uniform mesh is needed, Algorithm 4.11 produces the needed
result.
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Algorithm 4.10 Computation of the force vector and of the stiffness matrix

for nonhomogeneous Dirichlet conditions.

% Preallocation of the stiffness matriz and of the force wvector.
S (sum(sum(C==0)), sum(sum(C==0))) = 0;

F(sum(sum(C==0))) = 0;

% Indices of the matrices.

a = 0;
b = 0;
for ki = 0O:n
for 1i = 0:m
% ki and li are the indices of the first B—spline function.
% If the node is a Dirichlet node, then skip to the next
% iteration .
if C(ki+1, li+1) = 1, continue; end;
% Integration of the homogeneous part of the force wvector.
F(a+1) = forcelntegralBsplines ...
(n, p, Xi, m, q, Eta, P, ki, 1li, f, wp_ force);
% Iteration on the second B—spline basis function.
for kj = O:n
for 1j = 0:m
% If the node belongs to the set of Dirichlet nodes then
% it is taken into account only for the force wvector.
if C(kj+1, 1j+1) =— 1
% If the Dirichlet condition is homogeneous then
% it is convenient to short—circuited so that
% the integral is mot computed.
if D(kj+1, 1j+1) "= 0
% The term is subtracted from the force wvector
% term.
F(a+1) = F(a+1)-D(kj+1, 1j+1).%...
stiffnessIntegralBsplines ...
(n, p, Xi, m, q, Bta, P, ki, 1i, kj, 1j,...
wp _stiffness, a_1);
end
continue;
end
% Skip the terms which can be computed by ezploiting
% symmetry.
if b < a, b= b+1; continue; end
ki, kj, 1li, 1j
% Stiffness term.
S(a+1, b+1) = stiffnessIntegralBsplines ...
(n, p, Xi, m, q, Eta, P, ki, 1li, kj, lj,...
wp_stiffness , a_1);
b = b+1;
end
end
a = a+f1;
b = 0;
end
end

% Complete the lower triangle (symmetry).
for i = 1:length(S(1, :))
for j = 1:i
SGi, j) = 8@, i)
end
end
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Algorithm 4.11 Process of refinement which produces a uniform mesh with
(c=a)/y elements.

for i = a:b:c 1

k = findSpan(n, p, i, Xi); 2

if Xi(k+1l) =1 3

[n, Xi, m, Eta, P] =... 4

surfKnotIns(n, p, Xi, m, q, Eta,... 5

P, 0, i, k, 0, 1); 6

end 7

8

k = findSpan(m, q, i, Eta); 9

if Eta(k+1) "= i 10

[n, Xi, m, Eta, P] =... 11

surfKnotIns(n, p, Xi, m, q, Eta,... 12

P, 1, i, k, 0, 1); 13

end 14

end 15
Algorithm 4.12 Algorithm for the computation of the integral necessary to
build the stiffness matrix using the concepts reported in [37] (adaptive recursive

Simpson’s rule).

function s = stiffnessIntegralBsplines(n, p, Xi, m, q,... 1

Eta, P, ki, li, kj, 1j, pw, a_1) 2

s = 0; 3

% According to the properties of the B—spline basis functions, each 4

% function is momzero only in a specified interval. This property is wusefubd

% in order to reduce the domain of computation of the integral. 6

a = max([(ki+1), (kj+1)]); 7

b = min ([ ( ki+p+1+1), (kj+p+1+1)])—1; 8

= max([(1i+1), (1j +1)]); 9

d = min([(li+q+1+1), (lj+q+1+1)])—1; 10

% The integral is divided over the single elements as along the edges the 11

% degree of continuity is not known: it could lead to a wrong computation 12

% of the integral. 13

for xi i = a:b 14

for eta_i = c:d 15

s = st+dblquad (Q(x, y)stiffnessIntegrandBsplines ... 16

(n, p, Xi, m, q, Eta, P, x, y,... 17

ki, li, kj, lj, a 1), Xi(xi_ i), Xi(xi_i+1),... 18

Eta(eta i), Eta(eta i4+1)); 19

end 20

end 21

4.7.5 Implementations of integration in IGA

According to what has been said, two algorithms for the integration for both
the stiffness matrix and the force vector are reported: Algorithms 4.12 and 4.14
integrate using adaptive recursive Simpson’s rule (see [37]) and Algorithms 4.13
and 4.15 integrates using what has been proposed in 4.6. The integrands are
reported in Algorithms 4.16 and 4.18.

A possible performance boost could be achieved pre-computing all the eval-
uations of the B-spline basis functions and of the derivatives on all the Gauss
nodes.

The Neumann term has to be computed in forceIntegralBspline(...) method:
the algorithms 4.19 and 4.20 shows a possible way of doing this.
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Algorithm 4.13 Algorithm for the computation of the integral necessary to
build the stiffness matrix using the concepts of 4.6.

s = 0;
% Iteration over all the couples of integration mnodes.
for i = 1:4:length(pw)—3
s = s+pw(i+2)*xpw(i+3)*stiffnessIntegrandBsplines ...
(n, p, Xi, m, q, BEta, P, pw(i), pw(i+1),...
ki, li, kj, 1j, a 1);
end

Algorithm 4.14 Algorithm for the computation of the integral necessary to
build the force vector using the concepts reported in [37] (adaptive recursive
Simpson’s rule).

function F = forcelntegralBsplines ...
(n, p, Xi, m, q, Eta, P, ki, li, f, g N, a 1, pw, N)
F = 0;
for xi_i = ki+1:ki+p+1
for eta_i — li+1:li+q+1
F=F+...
dblquad (@(x, y)(forcelntegrandBsplines...
(n, p, Xi, m, q, Eta, P, x, y, ki, 1li, f)),...
Xi(xi_i), Xi(xi_i+1),...
Eta(eta i), Bta(eta i+1), le—5);
end
end

Algorithm 4.15 Algorithm for the computation of the integral necessary to
build the force vector using the concepts of 4.6.

F = 0;
for i = 1:4:length(pw)—3
F = Fpw(i+2)xpw(i+3)*forcelntegrandBsplines ...
(n, p, Xi, m, q, Eta, P, pw(i), pw(i+1), ki, li, f);
end
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Algorithm 4.16 Algorithm for the computation of the integrand for the stiff-

ness term (continues to Algorithm 4.17).

function s = stiffnessIntegrandBsplines(n,

Eta, P, xi, eta, ki, 1li, kj, 1j, a_1)
% Preallocation .
s(length(xi)) = 0;
oldeta = eta;
% Iteration on all
for 1 = 1l:length(xi)

moveForward = false;

moveXi = false;

moveMax = 100;

moveCurrent = 0;

eta = oldeta;

Jx = 0;

rcond = le—5;

% I want to avoid the determinant of the

% This happens when a singularity

% to translate the function

p,

the requested values on which to

is found and it is
to the parametric domain.

Xi, m, q,...

eval the

Jacobian matrix
not
In

% I simply move by a small percentage the point in which
% integrand 1is evaluated.
while Jx =— 0

% Determination of the derivatives. This calculation

% the calculation of the wvalue of the

% points and of the knot spans

% I can re—use these wvalues later on,

[SKL, eXi, eEta, spanxi,
bsplineSurfDerivs(n, p, Xi, m, q,

% Definition of the jacobian matriz.

DxDxi = [SKL(2, 1, 1), SKL(1, 2,

% Evaluate the Jacobian.

Jx = det(DxDxi);

if Jx = 0, Jx, end;

% If the Jacobian is 0, the matriz is

% invertible. This is not acceptable
% invertible.
if Jx "= 0, break; end;

% (continues...)

in which the points

spaneta]| =..

1); SKL(2, 1,

bsis functions

integrand .

to wvanish.
possible
this case
the

involves
in the

are located.

avoiding nmew evauations.

Eta, P, xi(l),

singular and therefore

as I mneed it to

2), SKL(1,

eta, 1);

2,

not
be

2)1];
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Algorithm 4.17 Algorithm for the computation of the integrand for the stiff-
ness term (continues from Algorithm 4.16).

end

% (continues...)
% Check to see if we still have to move in the same direction.
if moveXi = true
% If possible move back on zi in the parametric space.
if moveForward = true && xi(1) >= Xi(end)—rcond
moveForward = false;
end
if moveForward == false && xi(1l) <= Xi(1)+rcond
moveForward = true;
end
else
% If possible mowve back on eta in the parametric space.
if moveForward =— true && eta >= Eta(end)—rcond
moveForward = false;
end
if moveForward =— false && eta <= Eta(l)+rcond
moveForward = true;
end
end
moveCurrent = moveCurrent+1;
if moveCurrent >= moveMax, moveXi = “moveXi; end;
if moveXi = true
if moveForward == false, xi(l) = xi(1l)—rcond;
else xi(l) = xi(l)+rcond; end;
else
if moveForward == false , eta = eta—rcond;
else eta = etatrcond; end;
end

end

% Compute the inverse of the jacobian matriz.

DxiDx = inv (DxDxi);

dki = ki—spanxi+p-+1;

dli = li—spanetatq+1;

dkj = kj—spanxi+p+1;

dlj = lj—spanetatq+1;

% According to the local support property of the B—spline functions

% they are zero outside their local support.

if dki>0 && dki<=p+1 && dli >0 && dli<=q+1
dNidxi = eXi(2, dki).xeEta(1l, dli);

else dNidxi = 0; end;

if dli >0 && dli<=q+1 && dki>0 && dki<=p+1
dNideta = eBEta (2, dli).*eXi(1l, dki);

else dNideta = 0; end;

if dkj>0 && dkj<=p+1 && dlj >0 && dlj<=q+1
dNjdxi = eXi(2, dkj).xeEta(1l, dlj);

else dNjdxi = 0; end;

if dlj >0 && dlj<=q+1 && dkj>0 && dkj<=p+1
dNjdeta = eEta(2, dlj).xeXi(1, dkj);

else dNjdeta = 0; end;

% Definition of the gradients.

gradNi = [dNidxi; dNideta];

gradNj = [dNjdxi; dNjdeta];

% FEwvaluation of the integrand.

s(l) = Jx.x1.x(DxiDx’*gradNi) "« (DxiDx’* gradNj ) .*...
a 1(SKL(1, 1, 1), SKL(1, 1, 2));
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Algorithm 4.18 Algorithm for the computation of the integrand necessary to

build the force vector.

function F = forcelntegrandBsplines ...
(n, p, Xi, m, q, Eta, P, xi, eta, ki, li, f)
% Preallocation .
F(length(xi)) = 0;
for 1 = 1:length(xi)
% Determination of the derivatives.
[SKL, eXi, eEta, spanxi, spaneta] =..

bsplineSurfDerivs(n, p, Xi, m, q, Eta, P, xi(l), eta, 1);

% Definition of the jacobian matriz.
DxDxi = [SKL(2, 1, 1), SKL(1, 2, 1); SKL(2, 1,
% Evaluate the Jacobian.
Jx = det(DxDxi);
dki = ki—spanxi+p+1;
dli = li—spaneta+tq+1;
if dki>0 && dki<=p+1 && dli >0 && dli<=q+1
Nip = eXi(1, dki).xeBEta(1, dli);
else Nip = 0; end;
% Integrand.
F(l) = Jx.«f(SKL(1, 1, 1), SKL(1, 1, 2)).xNip;
end

2), SKL(1,

2,

2) 15
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Algorithm 4.19 Computation of the term of the force vector taking into ac-

count the Neumann conditions applied to the boundaries.

function F = forcelntegralBsplines02 ...
(n, p, Xi, m, q, Eta, P, ki, 1li, f, g N, a_1, pw,
F = 0;

N)

5
% According to the properties of the B—spline basis functions,
% function is monzero only in a specified interval. This property 1is

% in order to reduce the domain of computation of the
% The integral is divided over the single elements as

% degree of continuity is not known: it could lead to a wrong computation

% of the integral.
for xi_i = ki+1:ki+p+1
for eta_i — li+1:li+q+1
F=F+...
dblquad (@(x, y)(forcelntegrandBsplines ...
(n, p, Xi, m, q, Eta, P, x, y, ki, li, f)
Xi(xi_i), Xi(xi_i+1),...
Eta(eta_ i), Bta(eta i+1), le—5);
end
end

% N stores the definition of which edges of the parametric

% considered part of the Neuwumann boundary.
for i = 1:length(N)
if N(i) = 0, continue; end;
% Determine the domain of the line integral to co
switch i
case 1
if 1i 7=0, continue; end;
A = [Xi(1), Eta(1l)]; B = [Xi(end), Eta(1l)
domain (1) = Xi(ki+1);
domain (2) = Xi(ki+p+2);
case 2
if ki“=n, continue; end;

integral .
along the

).

mpute .

15

A = [Xi(end), Eta(1)]; B = [Xi(end), Eta(end)];

domain (1) = Eta(li-+1);
domain (2) = Eta(li4+q+2);
case 3
if 1i"=m, continue; end;
A= [Xi(1),
domain (1) = Xi(ki+1);
domain (2) = Xi(ki+p+2);
case 4
if ki™=0, continue; end;
A = [Xi(1), Eta(1l)]; B = [Xi(1), Eta(end)
domain (1) = Eta(li-+1);
domain (2) = Eta(li4+q+2);
end
% Computation of the integral.
F = F+quad(Q(x)(neumannIntegrand (n, p, Xi, m, q,
P, ki, li, a_1, g N, x, A, B)),...
domain (1), domain (2));
end

Eta(end)]|; B = [Xi(end), Eta(end)];

I;

Eta , ...

each

edges

domain has

W N

usefud

the
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Algorithm 4.20 Integrand of the Neumann term.

function N = neumannlIntegrand(n, p, Xi, m, g, Eta, P, ki, 1i,...
a_1l, g N, t, A, B)
N(length(t)) = 0;
for i = 1l:length(t)
% Definition of the map.
chi = (1—-t(i)).xA + t(i).*B;
% Determination of the derivatives.
[SKL, eXi, eEta, spanxi, spaneta] =...
bsplineSurfDerivs(n, p, Xi, m, q, Eta, P, chi(1l), chi(2), 1);
% Definition of the jacobian matrix.
DxDxi = [SKL(2, 1, 1), SKL(1, 2, 1); SKL(2, 1, 2), SKL(1, 2, 2)];
dki = ki—spanxi+p+1;
dli = li —spaneta+tq+1;
if dki>0 && dki<=p+1 && dli >0 && dli<=q+1
Nip = eXi(1, dki).xeBEta(1l, dli);
else
Nip = 0;
end
N(i) = a_1(SKL(1, 1, 1), SKL(1, 1, 2)).%...
g N(SKL(1, 1, 1), SKL(1, 1, 2)).%...
Nip.*norm (DxDxi*(—A+B) ’. /norm(—A+B) ) ;
end
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Chapter 5

Numerical examples

5.1 Thermal conduction

Let u () be the temperature field, f (x) the heat supply per unit volume and
k (x) the conductivity matrix. The steady state thermal conduction problem is
the problem of finding the temperature field u (x) given that

V(k(x)Vu(z))=f(x), VeecQ, given f: Q= R, u: Q=R
(m)*gD() Veelp, gp:Tp =R
)

K (x ():gN(w)v Vrely, gv:I';v = R

The application of the method introduced in 1.4-1.4.4 leads to the problem
of finding the function u (x) such that

a(v,p) =1(p), Vo € Hy (Q), v € Hy (Q)
a(v, @) = [Jo kVuVede, ve HHQ), Yo e HE (Q)
L(p) = [Jo (fo — sVAV@) de — [ kgnedD, Vo € Hj ()

((E): Ve € I'p
’V(SE): () VCBEFD,gDZFD—>R
Ii(:l))a( +7)( ) =gn (), Veely, gvn : v & R
u(@) = 08+ (3), va e 0

5.1.1 FEM solution on square plate

Let’s consider some different problems on a square plate. The first problem (5.1)
is a thermal problem with conductivity matrix £ = ILgje(x), domain Qg = (0, 1)27
gp=0and f=1:

{V(Vu (x)) =1, Va € Qg, givenu:Qg — R (5.1)

u(z) =0, Vo € 00

The first process to begin when solving this problem with FEM, after the deriva-
tion of the weak formulation and the application of the Galerkin method, is to
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Figure 5.1: Triangular mesh on the rectangular plate for the solution of a simple
thermal problem.

create some kind of mesh on the domain of interest, which is described by a
CAD model, using splines for instance. Let’s consider a simple object at the
beginning: a square plate. A possible mesh is given in Figure 5.1. The creation
of the stiffness matrix and of the force vector and the solution of the linear
system leads to a solution exact at the nodes (see Figure 5.2).

The second problem (5.7) is a thermal problem with conductivity matrix
K = Lize(x), domain Qg = (0, 1)2 and f = 1:

V (Vu(x)) =1, Ve, givenu: Qg — R
u(x) =1, Veelpg= {x € Qglx = [O,y]T ANx = [1,y]} . (5.2)
U (:n) =0, Va € aQs\FDﬂg

The third problem (5.3) is a thermal problem with conductivity matrix x =
Lsize(x), domain Qg = (0, 1)2 and f = 1

V (Vu(x)) = 20z, Vzx € Qg, given u: Qg — R
U (.’B) =1, Va € FD,S . (53)
u ) =0, Va € 3QS\FD7S

The fourth problem is:

V (22I,Vu (x)) = 202, VYV € Qg, given u: Qg — R
U(:B) =1, Vo € FD,S . (54)
u(m) = O7 Ve € aQS\FD7S

The solutions to the problems (5.2), (5.3) and (5.4) can be found in Figure
5.3.
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Figure 5.2: Approximated solution of a thermal problem with FEM on the
square plate using a mesh with 2705 nodes.
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Figure 5.3: Approximated solutions of problems (5.2), (5.3) and (5.4) found
using FEM with a mesh with 2705 nodes.

University of Padua Faculty of Engineering




168 CHAPTER 5. NUMERICAL EXAMPLES

Figure 5.4: Representations of the approximated solutions of the problem (5.1)
calculated using IGA, with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

Figure 5.5: Representations of the approximated solutions of the problem (5.2)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

5.1.2 IGA solution on square plate

The results of the analysis of the problems (5.1) to (5.4) with IGA can be seen
in Figures from 5.4 to 5.7.

A comparison of FEM and IGA solutions using the same number of nodes
is reported in Figure 5.8.

5.1.3 FEM solution on a plate with hole

Now, it is interesting to consider some more complex geometries. Let’s take,
for instance, an approximation of the plate with a hole in the corner described
using a B-spline surface, like the one represented in Figure 3.18. It is no more
possible to keep the exact geometry when trying to analyze the domain with
FEM. In this case, in fact, the “circular” hole needs to be approximated with
a polygonal shape (linear elements are used in this case). The refinement of
the mesh can represent the domain with higher precision, and this is useful in
this case, as it can be seen in Figure 5.9. The domain 2p is described using a
B-spline surface P (£,n) where the parametric space is always the unit square
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Figure 5.6: Representations of the approximated solutions of the problem (5.3)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.
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Figure 5.7: Representations of the approximated solutions of the problem (5.4)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.
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Figure 5.8: Approximated solutions using FEM with 25 nodes on the left, IGA
with 25 nodes on the right.
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Figure 5.9: Details of meshes for the plate with hole.
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[0,1]%, so
Qp = {(2.9) | @) = P (&), V(€.m) € 0,17}

We consider again four problems:

V (Vu(z)) =1, Vo Qp, givenu:Qp =R (5.5)
u(x) =0, Vo € 0Qdp ’ '
V(Vu(z)) =1, VxeQp, givenu:Qp - R
u(z) =1, Ve € I'pp ; (5.6)
u(w):O, ViL’EQP\FD’p
V (Vu(x)) =2z, VYx€Qp, givenu:Qp - R
u(x) =1, Veelpp ) (5.7)
U((l:):O, V$EQP\FD}ID
V (2IVu (z)) =1, V€ Qp, givenu:Qp - R
u (:L’) =1, Vo € FD,P s (58)
u(m): s VQIEQP\FD,F

where
I'pp= {w €Ople=[-4,y]" na = [x,4}}.

The solutions to the problems (5.5), (5.6), (5.7) and (5.8) can be found in Figure
5.10.

5.1.4 IGA solution on a plate with hole

When the plate with hole is described using B-spline functions and IGA is ap-
plied, there is no need to approximate the boundary. The effect of h-refinement
can be seen in Figures 5.20 and 5.21, and it can be seen that in every mesh, in-
cluding the coarsest, the domain is represented exactly as it was provided. The
solutions to the problems (5.5), (5.6), (5.7) and (5.8) can be found in Figures
from 5.11 to 5.14.

A comparison of the approximated solutions found using FEM and IGA
on the square plate with hole can be found in Figure 5.15. In this case, the
advantage of using IGA over FEM can be clearly seen.

5.1.5 IGA on Qp with optimized Gauss quadrature

The results of the analysis of the problems (5.5) to (5.8) with IGA can be seen
in Figures from 5.16 to 5.19.

5.1.6 Effects of h-refinement

Algorithms 4.3 and 4.4, which performs the knot insertion, can be used to refine
a mesh on an object. This is equivalent to the h-refinement in FEM, so that it
can be used to obtain a more precise solution. An example of h-refinement with
B-splines functions can be found in Figure 5.20: a uniform mesh is uniformly
refined in order to obtain a more precise approximation of the exact solution.
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Figure 5.10: Approximated solutions of the problems (5.5) on the top left, (5.6)
on the top right, (5.7) on the bottom left and (5.8) on the bottom right, using
linear elements in FEM analysis with a mesh with 2609 nodes.

Figure 5.11: Representations of the approximated solution of the problem (5.5)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.
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Figure 5.12: Representations of the approximated solution of the problem (5.6)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.

Figure 5.13: Representations of the approximated solution of the problem (5.7)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.
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Figure 5.14: Representations of the approximated solution of the problem (5.8)
calculated using IGA with integration using adaptive recursive Simpson’s rule,
with a mesh of 4 elements in each direction.
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Figure 5.15: Approximated solutions using FEM with 36 nodes on the left, IGA
with 35 nodes on the right.

Figure 5.16: Representations of the approximated solution of the problem (5.5)
calculated using IGA with optimized Gauss two-dimensional integration, with
a mesh of 4 elements in each direction.
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Figure 5.17: Representations of the approximated solution of the problem (5.6)
calculated using IGA with optimized Gauss two-dimensional integration, with
a mesh of 4 elements in each direction.
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Figure 5.18: Representations of the approximated solution of the problem (5.7)
calculated using IGA with optimized Gauss two-dimensional integration, with
a mesh of 4 elements in each direction.
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Figure 5.19: Representations of the approximated solution of the problem (5.8)
calculated using IGA with optimized Gauss two-dimensional integration, with
a mesh of 4 elements in each direction.
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Figure 5.20: Process of h-refinement on Qg for the problem (5.4).
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Figure 5.21: Process of h-refinement on Qp for the problem (5.8).
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(b)

Figure 5.22: h-refinement of domain ;.

5.1.7 IGA solution on a more complex domain

By using IGA, it is possible to analyze even more complex geometries. Let’s
consider then problem (5.9)

{V(Vu(a:)):l, Ve € Qy, given u:Q; — R (5.9)

u (w) = O7 V(c S aﬂl

where (27 is represented in Figure 5.22 in its coarsest mesh and its refinements.
In this case, IGA provides the solution (mesh of Figure 5.22c¢ is considered)
depicted in Figure 5.23.
Another interesting problem to test on this complex domain is the one re-
ported below:

4
4
<

&

=1, VreQ, givenu:Q; - R
0, Va € GQl\FD . (510)
1 Ve e Tp ={zle = (§,n),n=1}

(x)
)

u
u(x

The solution is illustrated in Figure 5.24, and it can be seen that the Dirichlet
condition is exactly satisfied on the boundary.

IGA can also work on three-dimensional surfaces, consider in fact the case
of a problem similar to (5.9) such as:

(5.11)

V(Vu(z)) =1, Vo e, givenu:Qy — R
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Figure 5.23: Solution of problem (5.11) found by using IGA.

Refinements and the solution over a mesh are reported in Figure 5.26 and

5.25.

5.1.8 Combination of Dirichlet and Neumann boundary

conditions

It is possible to introduce Neumann boundary conditions in the problems already

proposed. The three problems are:

V (Vu(x)) =1,
u(x) =0,
u(x) =1,
u(x) =2,

ou

™ gn;

V (Vu(x)) =1,
u(x) =0,

u(x) =1,

u(x) = 2,

Ju

B = 9N,

University of Padua

Va € Qg, given u: Qg — R
Vx € FD,O
Va € FD,I
Ve €I'pa

, (5.12)

Ve e I'y

Vo € Qp, given u: Qp - R
Ve eI'po
Ve el'p,
Ve €I'pe

, (5.13)

Ve e I'y
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Figure 5.24: Solution of problem (5.10) found by using IGA.
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Figure 5.25: h-refinement of domain 5.
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V(Vu(z)) =1, VxeQ, givenu:Q - R

u(x)=0 Ve eIl'po

u(x) =1, Ve e'py ’ (5.14)
(@) =2, Va € Tp

gz = gn, Ve ey

where

(
FDl_{w‘:NB(é-? )_wvé_:lvne[()?l]}v
( 77) xﬁge[o’l]vnzl}a
Iy —{m\w(f n) =, £€0,1], n=0}.

In the figures from (5.27) to (5.29) the solutions for & = 0 can be seen and in
the figures from (5.30) to (5.32) h =1 is illustrated. Tests with a nonconstant

function for Neumann conditions gy () = x is also reported in the figure from
(5.33) to (5.35).
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Figure 5.27: Solution of the problem (5.12) on the domain Qg with gy = 0.
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Figure 5.28: Solution of the problem (5.13) on the domain Qp with gy = 0.
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Figure 5.29: Solution of the problem (5.14) on the domain Q; with gy = 0.
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Figure 5.30: Solution of the problem (5.12) on the domain Qg with gy = 1.
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Figure 5.34: Solution of the problem (5.13) on the domain Qp with gy = 9z.
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Appendix A

Notes of functional analysis

A.1 Linear spaces

A.1.1 Real and complex linear space

Definition A.1. Let %6 = R or 8 = C. A nonempty abstract set V' endowed
with two binary operations + : V x V' — V (called addition) and - : BxV — V
(called multiplication by scalar) is (real or complex) linear space if and only if
the following ten conditions are satisfied for all a,b € 8 and u,v,w € V.

1. v+ w € V (closure of V under addition);
2. u+ (v+w) = (u+v) +w (associativity of addition in V');

3. there exists a neutral element 0 in V such that for all elements v € V,
v+ 0 =uv;

for all v € V there exists an element w € V such that v + w = 0;
v+ w = w + v (commutativity);
a-v €V (closure of V under multiplication by a scalar);

a-(b-v)=(ab)-v (associativity of scalar multiplication);

© N o e

if 1 denotes the multiplicative identity of 8 then 1-v = v (neutrality of
1);

9. a-(v+w)=a-v+a-w (distributivity with respect to addition);

10. (a+b)-v=a-v+b-v (distributivity with respect to scalar addition).

A.1.2 Linear and bilinear forms

Linear forms are linear operators which are commonly used in Finite Element
analysis. To define them we define first a linear transformation, then the linear
operator and lastly the linear functional (or linear form).

Definition A.2. Let V and W be linear spaces over the same field F. A linear
transformation is a function f:V — W such that:
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e flvt+tw)=f()+f(w), Yo,weV;
o f(AW)=Af(v), VveV,AeF.

Definition A.3. Let f be a linear transformation f : V — W, where V and
W are linear spaces over the field F'. If V' = W then the linear transformation
is called linear operator.

Definition A.4. Let V be a linear space over the field F'. The function f :
V' — F is called linear form. The space of all linear forms over the space V is
called dual space and denoted with V.

We need to define the dual space as well:

Definition A.5. Let V be a real or complex linear space of dimension n and
V = {v1,v2,...,0,} a basis of V. The basis V' = {v],v},...,v],} of the space
V' is said to be the dual basis of V' if f; (v;) = d;5, V1 <4,j < n.

Another important linear form frequently used in Finite Element analysis is
the bilinear form.

Definition A.6. Let V, W and Z be linear spaces over the field F. A bilinear
map is a function f: V x W — Z such that:

e the map z — f (z,y) from V to Z is a linear Vy € W;
e the map y — f(x,y) from W to Z is linear Vx € V.

Definition A.7. Let V be a linear spaces on a field F. A bilinear form is a
bilinear map f: V xV — F.

Similarly, we can give the definition of a bilinear form:

Definition A.8. A bilinear form on a linear space V over a field V is a bilinear
mapping f: V x V — F, such that:

1. flo+v,w)=f(v,w)+ f{,w), Yo, o',weV;
2. f(w,o+v) = f(w,v)+ f(w,v), Yo,v',we V;
3. f(Awv,w) = f (v, w) =Af (v,w), Vo,w e V.

There are some important properties used in the rest of the document for
the bilinear form:

Definition A.9. Let V be a real Hilbert space a : V x V — R a bilinear form
and A:V — V' a linear operator related to a (-,-) via

(Au) (v) = (Au,v) = a(u,v), Yu,v €V,
we say that:

1. a is bounded if there exists a constant C, such that |a (u,v)| < Cy |Jul| vl
for all u,v € V;

2. ais V-elliptic if there exists a constant C, > 0 such that a (u,v) > C, Hv||‘2/
forallveV.
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A.2 Normed spaces

A.2.1 Open and closed sets

Some definitions regarding the set theory are necessary.

Definition A.10. Let V be a normed space and S C V a subset of V. We
say that S is bounded in V if there exists a positive constant ¢ > 0 such that
lz|l,, < cforallzes.

Definition A.11. Let V be a normed space with the norm |-||;,, ¢ € V and
0 < r € R. By the open ball with the center g and radius r we mean the set

B(g,r)={veV, |lv-gl, <r}.

Definition A.12. Let V be a normed space and S C V. The set S is open in
V if for every g € S there exists » > 0 such that B(g,r) C S. The set S is
closed if its complement V' \ S is open.

A.2.2 [P-spaces

These spaces have are very important for the solution of PDEs. These spaces
were defined by Henri Léon Lebesgue who generalized the concept of Riemann
integral. The entire concept of Lebesgue integral is based on the Lebesgue
measure: we shall say that a set €y has zero Lebesgue measure in R? if its
d-dimensional measure is zero. For instance, the d-dimensional measure of a set
Qo consisting of a finite number of points or even of a countable infinite set of
points, such as the set of rational numbers, is zero if d > 1.

Definition A.13. Let f : Q — R, where Q C R? is an open measurable set.
The Lebesgue integral of f over €2 is invariant with respect to the values of the
function in zero-measure subsets of 2. So

/f(a:)da::/ f(z)de, ¥Qo C Q]|Q| =0.
Q 2\ Qo

Because of this definition, the Riemann integral and the Lebesgue integral
differ.

Definition A.14. Let  C R? be an open set. Consider the linear space V of
measurable functions defined in €. For every 1 < p < oo we define the LP-norm

inV as 1
nﬂp=(lgf@nﬂm)ﬂ

The L°°-norm in V is defined as

|uw:%{wMN@Q
e

where the essential supremum is defined as

ess| su x) | = inf su x) |.
(zegg( )> ZcQ,1Z|=0 (sz\lz)g( )>
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The spaces LP () are defined as
LP(Q):{feV:||f||p<oo}, Vp:1<p<oo

and

1@ = {7 eV (suplf @) <o

A.3 Inner product spaces

An inner product space is a linear space equipped with an inner product (-,-), :
V x V — C, where V is an inner product space. This structure associates each
pair of vectors of the space with a scalar quantity known as inner product. An
inner product space is also called a pre-Hilbert space. More formally:

Definition A.15. Let V be a real or complex linear space. An inner product
in V is any function (-,-),, : V x V — C with the following properties:

1. for any u € V, (u,u),, > 0 and moreover (u,u),, = 0 if and only if u = 0;
2. for any u,v € V, (u,v)y, = (v,u)y;
3. for any u,v,w € V and all a,b € C we have

(au + bv,w),, = a(u,w)y, +b(v,w),, .

An inner product space V is a linear space over C with an inner product defined
on it.

A.3.1 Hilbert spaces

For the definition of the Hilbert space it is necessary to define the Cauchy
sequence first.

Definition A.16. Let V be a normed space. A sequence {v,} —, C V is a
Cauchy sequence if for every R 3 ¢ > 0 there exists a natural number [ such
that for all natural numbers m,n > [

lvm — vnlly, <e.

Definition A.17. A normed space V' (and so an inner product) is complete if
every Cauchy sequence in V' is a convergent sequence.

Definition A.18. Every complete inner product space is said to be a Hilbert
space.
A.3.2 Bilinear forms and energetic spaces

The information that matters the most can be summarized in the following. We
can associate every bilinear form on a Banach space V a: V x V — R with a
unique linear operator A : V — V' defined by

(Au) (v) = (Au,v) = a (u,v), Yu,v € V. (A1)
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It can be shown that for each bilinear form a : V' x V' — R there is one and only
one associated linear operator A : V — V’. Some properties of bilinear forms
are:

Definition A.19. Let V be a Hilbert space on R, a : V x V' — R a bilinear
form and A : V — V' a linear operator related to a (-, -) via (A.1). We can state
the following:

1. a(-,-) is bounded o if there exists a constant C, > 0 such that |a (u,v)| <
Co |lu] lvll, Yu,v € V' (continuity);

2. a(-,-) is V-elliptic if there exists a constant C, > 0 such that a (v,v) >
Callvll,, Yo € V;

3. a(-,-) is symmetric if a (u,v) = a (v,u), Yu,v € V.

The bilinear form can be used to define an inner product, and therefore a
new space called Energetic space.

Definition A.20. Let V be a Hilbert space and a : V x V — R a bounded
symmetric V-elliptic bilinear form. The bilinear form defines an inner product
(u,v), = a(u,v) satisfying Definition A.15 called energetic inner product. The
norm induced by the energetic inner product is

||uHe = <u7u>e7
and it’s called energy norm.

Once the energetic inner product is defined, we can define the energetic
space. The reason for its name comes from physics, as in many systems the
energy can be expressed as an energetic inner product.

Definition A.21. A subspace of an Hilbert space equipped with an energetic
inner product is an energetic space.

A.3.3 Projections

Definition A.22. Let V be a linear space. An operator P : V — V is said to
be a projection if it is both linear and idempotent (P? = P).

Lemma A.23. Let V be a linear space. If V is a direct sum of two subspaces
Vi and Vo, V. =V, @V, then there exists a unique projection P so that P (V) =
Vi, (I —P) (V) = V,. Conversely, every projection operator P determines a
decomposition of the space V into

V=PWV)ad-P)(V).

An example of projection operator is the Lagrange interpolation

n

PU:Z‘U(%‘)H 7 , YveV.

T —
i=0 gAY
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Definition A.24. Let V be a Hilbert space. An operator P : V — V is said
to be an orthogonal projection if it is linear, idempotent and if

(v—Pv,w),, =0, Vve Vwe P (V).
The space P (V) is said to be the projection subspace.

Lemma A.25 reports an important fact about orthogonal projections: Puv
is the closest element to v € V among all the elements in the projection space
P (V).

Lemma A.25. Let V be a Hilbert space and W a closed subspace of V' equipped
with an orthonormal basis By = {w1,...,w,}. Let P be an orthogonal projec-
tion operator such that P (V) =W. Then for any v € V we have

|lv = Pu|| = inf ||v—w].
weW

A.4 Sobolev spaces

Definition A.26. Let Q C R? be an open set, k¥ > 1 an integer number and
p € [1,00). we define

WP (Q) = {f € LP () : DO f esists and lies in L? () for all multi-indices a, |a| < k}.
For every 1 < p < oo the norm ||-|,  is defined as

1 1

p
e, = | [ X 1pasran | = X I0as

@ al<k la] <k

For p = 0o we define
11k 00 = max D% f oo -

In the case p = 2 we abbreviate W*? (Q) = H* (Q).

It is important to note that:

Definition A.27. Let Q C R? be an open set, k > 1 an integer number. The
Sobolev space W#2 = H* endowed with the inner product

<f7g>k,2 :/ Z D fD*gdx = Z (D, Da9>L2(Q)
2 Jal<k lal<k
is a Hilbert space.
Switch definition.

Definition A.28. Let Q C R? be an open set, & > 1 an integer number. The
space H} () is a subspace of the Hilbert space H* and its definition is

HE(Q)={ve H*(Q): D =00n00V|a| <k}.
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A.4.1 Distributions

Definition A.29. Let Q C R? be an open set. The space of distributions is the
space containing all the infinitely smooth functions with compact support, and
can be defined by the writing

C () ={p e C>(Q) :supp(p) C Q, supp (¢) is compact},

where the support of the function ¢ is defined as

supp (p) = {x € Q: p(x) # 0}

and it is always closed and bounded.

Example A.30. Consider a bounded domain 2 = (—1,1) C R and consider

the functions )

@ (z) = cos (mx) + 1, X(w):e_l—CUQ.

These functions are not distributions in € as

supp (o) = supp (x) = [-1,1] € Q.

However, the function y can be extended by zero to be a distribution in the
interval (—1 —¢€,1+¢), where € > 0. The same cannot be done for ¢ as it
wouldn’t be C*° anymore, and this is a requirement for being a distribution.

Remark A.31. As stated in Definition A.29, the support of a function ¢ €
C§° (2) is surely a closed set (as it is the closure of a set). This means any
support can never touch the boundary of an open set Q (like it was in Example
A.30). This means for every ¢ € C§° () there is a thin interval along the
boundary OS2 where ¢ vanishes, as done in Example A.30.

A.4.2 Generalized integration by parts

Remark A.32. The formula of generalized integration by parts is often used
when working with partial differential equations and in the weak formulation.
Assume a bounded domain Q C R? with Lipschitz-continuous boundary and
assume

v(z)=(n,ve,...,va) (x)

is the outer normal to 9§2. The Green’s theorem for H* (Q)-functions states:

Theorem A.33. For every u,v € H' () it holds

Ou vdx = —/ u Ov dx +/ uvr;dS.
Q 61’1 0 (91:1 o0

Using Theorem A.33 it is possible to write, furthermore, the following lemma:

Lemma A.34. For allu € H* (Q) and v € H?(Q) it is

/uAvdx:—/ Vqud:}c+/ UJ@CZS7
Q Q aq OV
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where 5
v
Ew =Vu(x)- -v(x), N

For allu € [H! (Q)]d and v € H' () it holds

/(divu)vda::f/u~Vvda:+/ (u-v)vdS.
Q Q o0
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Appendix B

Notes of calculus

B.1 Continuity

In mathematics, a continuous function is a function for which, intuitively, small
changes in the input result in small changes in the output. Otherwise, a function
is said to be discontinuous. A continuous function with a continuous inverse
function is called bicontinuous. An intuitive though imprecise (and inexact)
idea of continuity is given by the common statement that a continuous function
is a function whose graph can be drawn without lifting the chalk from the
blackboard.

Definition B.1. A function f of variable x is continuous in xq if
1. f(x) exists;

2. lim f(x) exists;
rT—x0

3. lim f(x)=f(xo).

T—x0
Definition B.2. A function f : I — R of variable x is said to be k times
continuously differentiable in the interval I, or of class C* (I), if its derivatives

of order j, where 0 < j < k, exists and are continuous functions for all x € I. A
C® (I) function is a function that possesses continuous derivatives of any order.

B.2 Chain rule

The chain rule is the rule for the differentiation of the composite of two functions.
Definition B.3. Suppose f : x € R” — R™ is a function from the Euclidean

n-space to the Euclidean m-space. Such a function is given by m real-valued
component functions

fl (l‘laan"'7xn>7f2 (x]_,l‘g,...,.’lfn),.-.,fm (xl,l‘Q,...,.’L'n).
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The partial derivatives of all these functions (if they exist) can be organized in
an m x n matrix, the Jacobian matrix J; as follows:

on  on
o0x1 oxy,
Jr=1
O fm 0 fm
0x1 oxy,
Possible notations are Jy (21, %2, ..., Zy), O(y1,y2,---»Ym) and 2.
8(1'171172,...’.’17”) Da

Theorem B.4. Let v be a real-value function on (a,b) which is differentiable at
¢ € (a,b), and let ¥ be a real-valued function defined on an interval I containing
the range of ¥ and v (¢) as an interior point. If 9 is differentiable at ¥ (c), then

(Vo) (z)
is differentiable at x = ¢, and
(W) () =9 (¥ (c) ¥ (o).

It is possible to generalize this theorem to more variables and to partial
derivatives using the definition of Jacobian matrix.

Theorem B.5. Let U C R™ and V C R™ be open domains and let
Y. VoRL 99UV
The chain rule takes the form

Jypon () = (Jyp 0 ) Jo.

B.3 Integration by substitution

Theorem B.6. Let U,V be open sets in R™ and ¢ : U — V an injective
differentiable function with continuous partial derivatives, the Jacobian of which
is monzero for every x € U. Then, for any real-valued, compactly supported,
continuous function f, with support connected in ¢ (U),

[ f 0= [ 1o 1 () e

B.4 Taylor expansion

The Taylor expansion is useful when facing the problem of approximating a
function with polynomials in a point inside the domain. Let f : (a,b) — R and
xo € (a,b). If f is continuous in xy we can write (see Definition B.1 and using
the definition of limit)

lim f(z) = f (zo) & lim f(z)— f(z0) =0.

T—xT( T—To
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Using the Landau notation o (-) we can rewrite f () as

fx) = f(xo) +0(1), z— o
and, if f is differentiable in 2y (by definition of differentiability)

f@) = f2o)

= f'(z), x — zo,
Tr — X

which can be rewritten again using the Landau notation

f(x)=f(x0) + f' (x0) (x —20) + 0(x — x0), T — 0.

This way we were able to write f(x) using a polynomial of degree 0 and a
polynomial of degree 1, which can be thought of as approximations of f (z).
The same process can be continued again using polynomials of higher order.
All of this can be summarized with the Taylor’s theorem.

Theorem B.7. Ifn > 0 is an integer and f is a function which is n times con-
tinuously differentiable on the closed interval [a, x] and n+1 times differentiable
on the open interval (a,x), then

" (n)
f(x)= f(a)—|—17'a (x—a)+fTE(l) (:c—a)z—l—...—&-fT(a)(a:—a)"—FRn (z).

R, () is the remainder term, and several expressions are available to express
it. The Taylor’s theorem can be generalized to several variables as follows.

Theorem B.8. Let B be a ball in R™ centered at a point a, and f be a real-valued
function defined on the closure B having n+ 1 continuous partial derivatives at
every point. Taylor’s theorem asserts that for any x € B

fy =Y 2O e S R@ -

|a|=0 la|=n+1

where the summation extends over the multi-indices c.
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A

Adaptive refinement, 66
Adaptivity, 66

Anchor, 97

Approximation, 17
Approximation problem, 17
Automated Design Loop, 16

B
Basis function, 74, 79
Bernstein polynomial, 74
Best interpolant, 17
Bézier representation, 74
Bézier curve, 74
Bézier surface, 75
Rational Bézier curve, 75
Rational Bézier surface, 78
Blending function, 74
Breakpoint, 79
Brick element, 56
B-spline representation, 79
B-spline curve, 88
B-spline surfaces, 93
Rational B-spline curve, 101
Rational B-spline surface, 103
B-spline solid, 96
Bubble function, 43, 44, 53
Bubble nodes, 52, 54

C

CAD function, 16

CAD modeler, 16

Céa’s lemma, 65

change of coordinate, 45
Chebyshev nodal point, 42
Classical solution, 19
Coalesced node, 32
Completeness property, 32
Control net, 105

Control point, 74, 101
Control polygon, 101

Convergence, 29, 31, 32

D

Degeneration, 32

Degree elevation, 119, 136
Degrees of freedom, 17
Delta property, 53
Differential equation, 15
Dirichlet lift, 21

Discrete problem, 28

E

Edge basis function, 55
Edge function, 53

Edge nodes, 52
Element subdivision, 67
Elliptic operator, 19
Elliptic PDE, 18, 19
Enrichment, 67
Explicit equation, 71

F
Fekete points, 53
Finite element, 15, 34

Finite Element Method (FEM), 15, 27

Force vector, 28

G

Galerkin method, 27, 49, 64
Gauss-Lobatto nodal point, 42
Gauss-Lobatto points, 52

grid generator, 16

Grid vertex, 34

H
Hat functions, 34
HERMES project, 69

Homogeneous Dirichlet boundary con-

dition, 19
hp-refinement, 68, 69, 119, 141
h-refinement, 67
Hyperbolic PDE, 18, 24
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I

Implicit equation, 71

Index space, 97

Interpolation, 17

Isogeometric Analysis, 15
Isogeometric analysis, 115
Isoparametric concept, 30, 31, 45
Isoparametric element, 31

K

Knot, 79

Knot insertion, 119, 135
Knot vector, 79

L

Lagrange interpolation, 40
Lagrange interpolation condition, 40
Lagrange shape function, 52
Legendre differential equation, 43
Legendre polynomial, 43

Linear system, 128
Lipschitz-continuity, 19

Local nodal interpolant, 30

Local refinement, 136
Lowest-order element, 48
Lowest-order elements, 33

M

Mapping, 32
Mathematical model, 15
Mesh, 34, 48, 127

Mesh diameter, 34
Mesh regeneration, 67

N

Neumann boundary conditions, 21
Nodal element, 29

Nodal point, 40

Nodal shape function, 30

Ordinary Differential Equation (ODE),
15
Orthogonal projection, 65

P

Parabolic PDE, 18, 23

Parametric equation, 71

Parametric space, 97, 117

Partial Differential Equation (PDE), 15

Partition of unity, 111

Patch, 127

PDE, 18

ph-refinement, 119, 141

Physical space, 97

Point collocation, 64

Power basis representation, 73
Power basis curve, 73
Power basis surface, 74

p-refinement, 67

R
Rational basis function, 77, 105
Reference domain, 30
Reference map, 30, 45
Refinement, 66
h-refinement, 67
p-refinement, 67
Refinements, 135
h-refinement, 135
p-refinement, 136
Remeshing, 67
Rodrigues’ formula, 43
Roof functions, 34
r-refinement, 68
Runge’s phenomenon, 42

S

Second-order PDE, 18
Shape function, 15
Shape functions, 40

Nonhomogeneous Dirichlet boundary congmooth, 32

ditions, 20
Nonuniform p-refinement, 69
NURBS, 97

NURBS curve, 101
NURBS surface, 103

(0]

One-to-one mapping, 32
Onto, 32

optimization loop, 16

University of Padua

Space of the B-splines, 88
Space-time cylinder, 19
Star point, 112

Stiffness matrix, 28
Strong solution, 19
Subdomain collocation, 64
Surface, 71

T
Tensor product, 72
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Test function, 20
Time-dependant PDE, 19
Time-in dependant PDE, 19
T-junctions, 111

T-mesh, 111

U

Unconstrained grid vertex, 50
Unisolvency, 29

Unknown vector, 28

A%

Variation, 20

Variational crime, 127
Variational crimes, 48
Vertex basis function, 55
Vertex function, 43-45, 53
Vertex nodes, 52

Vertex patch, 50, 55
Volumetric modeler, 16

\)\%

Weak formulation, 19

Weierstrass approximation theorem, 42
Weight, 77, 105, 109

Weight function, 20
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